Infants' Reactions to Visual Movement of the Environment

Perception ◽  
1989 ◽  
Vol 18 (5) ◽  
pp. 667-673 ◽  
Author(s):  
André Delorme ◽  
Jean-Yves Frigon ◽  
Carole Lagacé

It has been demonstrated many times that the posture of infants is affected by movement of the visual environment. However, in previous studies, measurements taken with infants less than 10 to 12 months of age have always been recorded with the infants in a sitting position. An experiment is reported in which the postural reactions to a sinusoidal movement of the visual environment were recorded in infants 7 months of age and older standing with support. Fifty subjects divided into five groups (mean age 7.15 to 48.6 months) participated in the experiment. The groups differed in age and motor ability. Movement of the visual environment was achieved by means of a floorless room that could be moved sinusoidally in the anteroposterior axis. The subjects had to stand holding a horizontal bar fixed to a force-measurement platform. For each subject, measurements were made during four 60 s intervals: two with movement of the room and two with the room stationary. For all groups, reactions in the anteroposterior axis were stronger than in the lateral axis and this was true for both stimulus conditions. Comparison of the differences between the movement and stationary conditions in the anteroposterior axis, as a function of age, shows that the youngest infants seemed paradoxically to give stronger reactions when the room was stationary than when it was moving; the inverse was true for older infants and this difference increased with age. An analysis of the data with fast Fourier transforms reveals that the majority of subjects showed a pattern of postural reactions where the dominant (peak) frequency was identical to the peak frequency of room movement. The results of the present experiment lead to the conclusion that young infants react posturally to movements of their visual environment as soon as they are able to stand without help. Also, the best synchronization is found in infants that have just learned to stand without help. These results confirm that ‘visual proprioception’ assumes a leading role in the learning of a new stance.

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Obai Kargbo ◽  
Mi-An Xue ◽  
Jinhai Zheng

A numerical model of a rectangular tank containing a layered liquid is modeled for studying layered sloshing wave. The Arbitrary Lagrangian Eulerian method is used to track the development for both the interfacial and free surface of the fluid domain. A series of cases are simulated for baffled and unbaffled sloshing with various excitation frequencies and various baffle configurations. A case containing a submerged block is also simulated to observe the interfacial wave interaction with the block structure and to observe how the position and size of the block affect the interfacial wave in a fluid. Velocity screenshots are analyzed for observing the velocity distribution in the layers and to observe the behavior of the interfacial layer for baffled and unbaffled tank cases. A fast Fourier transform spectral analysis of the layered liquid sloshing time series for both the interfacial layer and free surface layer is presented to observe the energy in the fluid layers as well as to observe the dominant peak frequency for both the layers.


Author(s):  
Masaaki Mori

In many engineering applications, obstacles often appear in the wake of obstacles. Vortices shed from an upstream obstacle interact with downstream obstacle and generate noise, for example blades in a turbomachinery, tubes in a heat exchanger, rotating blades like a helicopter and wind turbine and so on. This phenomenon is called wake-body interaction or body-vortex interaction (BVI). The rod-airfoil and airfoil-airfoil configurations are typical models for the wake-body interaction. A rod and an airfoil are immersed upstream of the airfoil. In this chapter, we review the noise mechanism generated by the wake-body interaction and show the numerical results obtained by the coupling method using commercial CFD and acoustic BEM codes. The results show that depending on the spacing between the rod or airfoil and the airfoil, the flow patterns and noise radiation vary. With small spacing, the vortex shedding from the upstream obstacle is suppressed and it results in the suppression of the sound generation. With large spacing, the shear layer or the vortices shed from the upstream obstacle impinge on the downstream obstacle and it results in the large sound generation. The dominant peak frequency of the generated sound varies with increase in the spacing between the two obstacles.


1973 ◽  
Vol 63 (5) ◽  
pp. 1709-1722
Author(s):  
Leon Reiter

abstract Filtered time series of Rayleigh waves from 4 events recorded on the quartz accelerometer at the IGPP, Camp Elliott Station, were analyzed. Attenuation (Q−1) was computed for spheroidal fundamental modes (oS19 to oS24) from several sequences of time-lapsed records for each event. A five-fold variation in measured Q−1 (and some variations in peak frequency) was assumed to be the result of lateral inhomogeneities in earth structure. Utilizing the duality between Rayleigh waves and fundamental-mode spheroidal oscillations, model power spectra were computed by summing the simulated Fourier transforms of dispersed wave trains. The effect of lateral variations in earth structure resulting in reflection, refraction and mode conversion of fundamental-mode surface waves was simulated by changes in amplitude, phase angle, and group and component travel times. Assuming an anelastic 10,000/Q of 33.3 (Q = 300), the observed range of measured Q−1 (and peak frequency) variations was duplicated by models with up to 5 per cent of the fundamental-mode Rayleigh-wave energy being “scattered”, i.e., reflected, refracted or converted to higher modes. In the real Earth, this would call for lateral variations in velocity structure well below the upper few hundred kilometers of the mantle. Recent seismological investigations have suggested lateral variations at these depths.


Author(s):  
Yunshi Zhang ◽  
Yu Lou ◽  
Nan Zhang ◽  
Yanmei Cao ◽  
Liu Chen

This paper aims to study the transfer laws of vibration signals in the free field near a high-speed train line by conducting a field test. The characteristics of ground vibration acceleration were analyzed in the time and frequency domains, and a prediction method in the frequency domain was proposed. The results show: (1) there is a vibration amplification area away from the bottom of the pier under the influence of high-speed trains running over the bridge due to the fluctuation attenuation of the vibration waves; (2) the dominant peak frequency points in the frequency spectrum of the acceleration can be regarded as the resonance frequency induced by periodic loading; and (3) the soil vibration can be effectively predicted by the proposed method with a strong capability to defend the interference of environmental vibrations according to the comparison between the predicted value and the experimental data.


2011 ◽  
Vol 70 (2) ◽  
pp. 67-76
Author(s):  
Kiyoko Iho ◽  
Kazue Asano ◽  
Mayumi Murayama ◽  
Tsugio Akutsu ◽  
Hideaki Naganuma ◽  
...  

2021 ◽  
Vol 263 (1) ◽  
pp. 5360-5371
Author(s):  
Masaaki Mori

In many engineering applications, the wake-body interaction or body-vortex interaction (BVI) occurs. In the wake-body interaction, vortices shed from an upstream obstacle interact with downstream obstacle and generate noise, for example blades in a turbomachinery, tubes in a heat exchanger, rotating blades like a helicopter and wind turbine and so on. The rod-airfoil and airfoil-airfoil configurations are typical models for the wake-body interaction. A rod and an airfoil are immersed upstream of the airfoil. In this paper, we reviewed the noise mechanism generated by the wake-body interaction and show the numerical results obtained by the coupling method using commercial CFD and acoustic BEM codes. The results shows that depending on the spacing between the rod or airfoil and the airfoil, the flow patterns and noise radiation vary. With small spacing, the vortex shedding from the upstream obstacle is suppressed and it results in the suppression of the sound generation. With large spacing, the shear layer or the vortices shed from the upstream obstacle impinge on the downstream obstacle and it results in the large sound generation. The dominant peak frequency of the generated sound varies with increasing of the spacing between the two obstacles.


2021 ◽  
Vol 38 (1) ◽  
pp. 3-16
Author(s):  
Casey R. Densmore ◽  
Steven R. Jayne ◽  
Elizabeth R. Sanabia

AbstractAirborne expendable bathythermographs (AXBTs) are air-launched, single-use temperature–depth probes that telemeter temperature observations as VHF-modulated frequencies. This study describes the AXBT Real-Time Editing System (ARES), which is composed of two components: the ARES Data Acquisition System, which receives telemetered temperature–depth profiles with no external hardware other than a VHF radio receiver, and the ARES Profile Editing System, which quality controls AXBT temperature–depth profiles. The ARES Data Acquisition System performs fast Fourier transforms on windowed segments of the demodulated signal transmitted from the AXBT. For each segment, temperature is determined from peak frequency and depth from elapsed time since profile start. Valid signals are distinguished from noise by comparing peak signal levels and signal-to-noise ratios to predetermined thresholds. When evaluated using 387 profiles, the ARES Data Acquisition System produced temperature–depth profiles nearly identical to those generated using a Sippican MK-21 processor, while reducing the amount of noise from VHF interference included in those profiles. The ARES Profile Editor applies a series of automated checks to identify and correct common profile discrepancies before displaying the profile on an editing interface that provides simple user controls to make additional corrections. When evaluated against 1177 tropical Atlantic and Pacific AXBT profiles, the ARES automated quality control system successfully corrected 87% of the profiles without any required manual intervention. Necessary future work includes improvements to the automated quality control algorithm and algorithm evaluation against a broader dataset of temperature–depth profiles from around the world across all seasons.


Author(s):  
Kemining W. Yeh ◽  
Richard S. Muller ◽  
Wei-Kuo Wu ◽  
Jack Washburn

Considerable and continuing interest has been shown in the thin film transducer fabrication for surface acoustic waves (SAW) in the past few years. Due to the high degree of miniaturization, compatibility with silicon integrated circuit technology, simplicity and ease of design, this new technology has played an important role in the design of new devices for communications and signal processing. Among the commonly used piezoelectric thin films, ZnO generally yields superior electromechanical properties and is expected to play a leading role in the development of SAW devices.


Author(s):  
W. Chiu ◽  
M.F. Schmid ◽  
T.-W. Jeng

Cryo-electron microscopy has been developed to the point where one can image thin protein crystals to 3.5 Å resolution. In our study of the crotoxin complex crystal, we can confirm this structural resolution from optical diffractograms of the low dose images. To retrieve high resolution phases from images, we have to include as many unit cells as possible in order to detect the weak signals in the Fourier transforms of the image. Hayward and Stroud proposed to superimpose multiple image areas by combining phase probability distribution functions for each reflection. The reliability of their phase determination was evaluated in terms of a crystallographic “figure of merit”. Grant and co-workers used a different procedure to enhance the signals from multiple image areas by vector summation of the complex structure factors in reciprocal space.


Author(s):  
E. Voelkl ◽  
L. F. Allard

The conventional discrete Fourier transform can be extended to a discrete Extended Fourier transform (EFT). The EFT allows to work with discrete data in close analogy to the optical bench, where continuous data are processed. The EFT includes a capability to increase or decrease the resolution in Fourier space (thus the argument that CCD cameras with a higher number of pixels to increase the resolution in Fourier space is no longer valid). Fourier transforms may also be shifted with arbitrary increments, which is important in electron holography. Still, the analogy between the optical bench and discrete optics on a computer is limited by the Nyquist limit. In this abstract we discuss the capability with the EFT to change the initial sampling rate si of a recorded or simulated image to any other(final) sampling rate sf.


Sign in / Sign up

Export Citation Format

Share Document