scholarly journals Enhanced Optic Flow Speed Discrimination While Walking: Contextual Tuning of Visual Coding

Perception ◽  
10.1068/p5845 ◽  
2007 ◽  
Vol 36 (10) ◽  
pp. 1465-1475 ◽  
Author(s):  
Frank H Durgin ◽  
Krista Gigone

We tested the hypothesis that long-term adaptation to the normal contingencies between walking and its multisensory consequences (including optic flow) leads to enhanced discrimination of appropriate visual speeds during self-motion. In experiments 1 (task 1) and 2 a two-interval forced-choice procedure was used to compare the perceived speed of a simulated visual flow field viewed while walking with the perceived speed of a flow field viewed while standing. Both experiments demonstrated subtractive reductions in apparent speed. In experiments 1 and 3 discrimination thresholds were measured for optic flow speed while walking and while standing. Consistent with the optimal-coding hypothesis, speed discrimination for visual speeds near walking speed was enhanced during walking. Reduced sensitivity was found for slower visual speeds. The multisensory context of walking alters the coding of optic flow in a way that enhances speed discrimination in the expected range of flow speeds.

1998 ◽  
Vol 79 (3) ◽  
pp. 1461-1480 ◽  
Author(s):  
Markus Lappe ◽  
Martin Pekel ◽  
Klaus-Peter Hoffmann

Lappe, Markus, Martin Pekel, and Klaus-Peter Hoffmann. Optokinetic eye movements elicited by radial optic flow in the macaque monkey. J. Neurophysiol. 79: 1461–1480, 1998. We recorded spontaneous eye movements elicited by radial optic flow in three macaque monkeys using the scleral search coil technique. Computer-generated stimuli simulated forward or backward motion of the monkey with respect to a number of small illuminated dots arranged on a virtual ground plane. We wanted to see whether optokinetic eye movements are induced by radial optic flow stimuli that simulate self-movement, quantify their parameters, and consider their effects on the processing of optic flow. A regular pattern of interchanging fast and slow eye movements with a frequency of 2 Hz was observed. When we shifted the horizontal position of the focus of expansion (FOE) during simulated forward motion (expansional optic flow), median horizontal eye position also shifted in the same direction but only by a smaller amount; for simulated backward motion (contractional optic flow), median eye position shifted in the opposite direction. We relate this to a change in Schlagfeld typically observed in optokinetic nystagmus. Direction and speed of slow phase eye movements were compared with the local flow field motion in gaze direction (the foveal flow). Eye movement direction matched well the foveal motion. Small systematic deviations could be attributed to an integration of the global motion pattern. Eye speed on average did not match foveal stimulus speed, as the median gain was only ∼0.5–0.6. The gain was always lower for expanding than for contracting stimuli. We analyzed the time course of the eye movement immediately after each saccade. We found remarkable differences in the initial development of gain and directional following for expansion and contraction. For expansion, directional following and gain were initially poor and strongly influenced by the ongoing eye movement before the saccade. This was not the case for contraction. These differences also can be linked to properties of the optokinetic system. We conclude that optokinetic eye movements can be elicited by radial optic flow fields simulating self-motion. These eye movements are linked to the parafoveal flow field, i.e., the motion in the direction of gaze. In the retinal projection of the optic flow, such eye movements superimpose retinal slip. This results in complex retinal motion patterns, especially because the gain of the eye movement is small and variable. This observation has special relevance for mechanisms that determine self-motion from retinal flow fields. It is necessary to consider the influence of eye movements in optic flow analysis, but our results suggest that direction and speed of an eye movement should be treated differently.


Cephalalgia ◽  
2006 ◽  
Vol 26 (8) ◽  
pp. 949-959 ◽  
Author(s):  
AM McKendrick ◽  
A Turpin ◽  
S Webb ◽  
DR Badcock

Some migraineurs have increased thresholds for the detection of global dot motion. We investigated whether migraineurs show consequential abnormalities in the determination of direction of self-motion (heading) from simulated optic flow. The ability to determine heading from optic flow is likely to be necessary for optimal determination of self-motion through the environment. Twenty-five migraineurs and 25 controls participated. Global dot motion coherence thresholds were assessed, in addition to performance on two simulated heading tasks: one with a symmetrical flow field, and the second with differing velocity of optic flow on the left and right sides of the participant. While some migraineurs demonstrated abnormal global motion coherence thresholds, there was no difference in performance on the heading tasks at either simulated walking (5 km/h) or driving (50 km/h) speeds. Increased global motion coherence thresholds in migraineurs do not result in abnormal judgements of heading from 100± coherent optic flow.


Perception ◽  
1996 ◽  
Vol 25 (1_suppl) ◽  
pp. 61-61
Author(s):  
A Grigo ◽  
M Lappe

We investigated the influence of stereoscopic vision on the perception of optic flow fields in psychophysical experiments based on the effect of an illusory transformation found by Duffy and Wurtz (1993 Vision Research33 1481 – 1490). Human subjects are not able to determine the centre of an expanding optic flow field correctly if the expansion is transparently superimposed on a unidirectional motion pattern. Its location is rather perceived shifted in the direction of the translational movement. Duffy and Wurtz proposed that this illusory shift is caused by the visual system taking the presented flow pattern as a flow field composed of linear self-motion and an eye rotation. As a consequence, the centre of the expansional movement is determined by compensating for the simulated eye rotation, like determining one's direction of heading (Lappe and Rauschecker, 1994 Vision Research35 1619 – 1631). In our experiments we examined the dependence of the illusory transformation on differences in depth between the superimposed movements. We presented the expansional and translational stimuli with different relative binocular disparities. In the case of zero disparity, we could confirm the results of Duffy and Wurtz. For uncrossed disparities (ie translation behind expansion) we found a small and nonsignificant decrease of the illusory shift. In contrast, there was a strong decrease up to 80% in the case of crossed disparity (ie translation in front of expansion). These findings confirm the assumption that the motion pattern is interpreted as a self-motion flow field: only in the unrealistic case of a large rotational component present in front of an expansion are the superimposed movements interpreted separately by the visual system.


2016 ◽  
Vol 3 (5) ◽  
pp. 160096 ◽  
Author(s):  
Georgios K. Kountouriotis ◽  
Callum D. Mole ◽  
Natasha Merat ◽  
Richard M. Wilkie

How do animals follow demarcated paths? Different species are sensitive to optic flow and one control solution is to maintain the balance of flow symmetry across visual fields; however, it is unclear whether animals are sensitive to changes in asymmetries when steering along curved paths. Flow asymmetries can alter the global properties of flow (i.e. flow speed) which may also influence steering control. We tested humans steering curved paths in a virtual environment. The scene was manipulated so that the ground plane to either side of the demarcated path produced larger or smaller asymmetries in optic flow. Independent of asymmetries and the locomotor speed, the scene properties were altered to produce either faster or slower globally averaged flow speeds. Results showed that rather than being influenced by changes in flow asymmetry, steering responded to global flow speed. We conclude that the human brain performs global averaging of flow speed from across the scene and uses this signal as an input for steering control. This finding is surprising since the demarcated path provided sufficient information to steer, whereas global flow speed (by itself) did not. To explain these findings, existing models of steering must be modified to include a new perceptual variable: namely global optic flow speed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adiba Ali ◽  
Maitreyee Roy ◽  
Hind Saeed Alzahrani ◽  
Sieu K. Khuu

AbstractBlue-light filtering lenses (BFLs) are marketed to protect the eyes from blue light that may be hazardous to the visual system. Because BFLs attenuate light, they reduce object contrast, which may impact visual behaviours such as the perception of object speed which reduces with contrast. In the present study, we investigated whether speed perception is affected by BFLs. Using a two-interval forced-choice procedure in conjunction with Method of Constant Stimuli, participants (n = 20) judged whether the perceived speed of a moving test stimulus (1.5–4.5°/s) viewed through a BFL was faster than a reference stimulus (2.75°/s) viewed through a clear lens. This procedure was repeated for 3 different BFL brands and chromatic and achromatic stimuli. Psychometric function fits provided an estimate of the speed at which both test and reference stimuli were matched. We find that the perceived speed of both chromatic and achromatic test stimuli was reduced by 6 to 20% when viewed through BFLs, and lenses that attenuated the most blue-light produced the largest reductions in perceived speed. Our findings indicate that BFLs whilst may reduce exposure to hazardous blue light, have unintended consequences to important visual behaviours such as motion perception.


1971 ◽  
Vol 22 (2) ◽  
pp. 183-195 ◽  
Author(s):  
R. R. Huffman ◽  
Joseph Genin

SummaryA non-linear mathematical model for the study of the dynamics of an extensible cable subjected to aerodynamic forces generated by a uniform flow field is formulated. Solutions are found considering large displacement caused by suddenly applied loads (i.e., gusts, shock waves, turbulence) for a range of flow speeds and cable lengths. Transition from overdamped to oscillatory motion is observed when flow speed and cable length are increased and decreased respectively. The stability of the system is discussed.


Perception ◽  
10.1068/p3321 ◽  
2002 ◽  
Vol 31 (4) ◽  
pp. 463-480 ◽  
Author(s):  
Stephen Palmisano

Previous research found that adding stereoscopic information to radially expanding optic flow decreased vection onsets and increased vection durations (Palmisano, 1996 Perception & Psychophysics58 1168–1176). In the current experiments, stereoscopic cues were also found to increase perceptions of vection speed and self-displacement during vection in depth—but only when these cues were consistent with monocularly available information about self-motion. Stereoscopic information did not appear to be improving vection by increasing the perceived maximum extent of displays or by making displays appear more three-dimensional. Rather, it appeared that consistent patterns of stereoscopic optic flow provided extra, purely binocular information about vection speed, which resulted in faster/more compelling illusions of self-motion in depth.


2021 ◽  
Vol 25 ◽  
pp. 233121652110101
Author(s):  
Dmitry I. Nechaev ◽  
Olga N. Milekhina ◽  
Marina S. Tomozova ◽  
Alexander Y. Supin

The goal of the study was to investigate the role of combination products in the higher ripple-density resolution estimates obtained by discrimination between a spectrally rippled and a nonrippled noise signal than that obtained by discrimination between two rippled signals. To attain this goal, a noise band was used to mask the frequency band of expected low-frequency combination products. A three-alternative forced-choice procedure with adaptive ripple-density variation was used. The mean background (unmasked) ripple-density resolution was 9.8 ripples/oct for rippled reference signals and 21.8 ripples/oct for nonrippled reference signals. Low-frequency maskers reduced the ripple-density resolution. For masker levels from −10 to 10 dB re. signal, the ripple-density resolution for nonrippled reference signals was approximately twice as high as that for rippled reference signals. At a masker level as high as 20 dB re. signal, the ripple-density resolution decreased in both discrimination tasks. This result leads to the conclusion that low-frequency combination products are not responsible for the task-dependent difference in ripple-density resolution estimates.


2014 ◽  
Vol 98 ◽  
pp. 14-25 ◽  
Author(s):  
Constance S. Royden ◽  
Michael A. Holloway
Keyword(s):  

1994 ◽  
Vol 37 (3) ◽  
pp. 662-670 ◽  
Author(s):  
Peter J. Fitzgibbons ◽  
Sandra Gordon-Salant

This study examined auditory temporal sensitivity in young adult and elderly listeners using psychophysical tasks that measured duration discrimination. Listeners in the experiments were divided into groups of young and elderly subjects with normal hearing sensitivity and with mild-to-moderate sloping sensorineural hearing loss. Temporal thresholds in all tasks were measured with an adaptive forced-choice procedure using tonal stimuli centered at 500 Hz and 4000 Hz. Difference limens for duration were measured for tone bursts (250 msec reference duration) and for silent intervals between tone bursts (250 msec and 6.4 msec reference durations). Results showed that the elderly listeners exhibited diminished duration discrimination for both tones and silent intervals when the reference duration was 250 msec. Hearing loss did not affect these results. Discrimination of the brief temporal gap (6.4 msec) was influenced by age and hearing loss, but these effects were not consistent across all listeners. Effects of stimulus frequency were not evident for most of the duration discrimination conditions.


Sign in / Sign up

Export Citation Format

Share Document