On the Nature of the Gated Colour Opponency in the On-Units of the Frog Retina: Electrophysiological Study and Model

Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 262-262 ◽  
Author(s):  
E M Maximova ◽  
V V Maximov ◽  
O Y Orlov

Ganglion cells of the ON-type in the frog retina produce colour-dependent responses differing in temporal patterns (short bursts to excitation of red-sensitive cones as opposed to prolonged discharges if blue-sensitive ‘green rods’ are excited). Their gated colour opponency (Kicliter et al, 1981 Brain Research210 103 – 113; Maximov et al, 1985 Vision Research25 1037 – 1049) becomes apparent from the OFF-responses in conditions when the test stimuli are superimposed on a background of another colour. So, when blue glass is introduced in the light beam (decreasing the excitation mainly of red-sensitive cones), an OFF-response is observed, much like the response to the onset of blue light. It has been suggested that opponency in ON-cells is asymmetric, ie that the red signal reaches the blue channel with reversed sign, but not vice versa. A single-unit-recording study revealed the dependence of ON-cell responses both on the colour of stimuli presented in the centre of the receptive field and on the steady illumination of its surround. Surround illumination was found to favour OFF-responses in ON-units. In some cases even the cessation of blue light elicited an OFF-response with a discharge pattern resembling that of the onset of red light. In these cases an ON-response to yellow glass could also be obtained. These observations prove some degree of symmetry in the opponency of the red and blue channels. It is suggested that feedback from horizontal cells onto photoreceptor terminals is involved in the gated colour opponency. A circuit model that reproduces the observed phenomena is presented.

1994 ◽  
Vol 11 (6) ◽  
pp. 1193-1203 ◽  
Author(s):  
Chen-Yu Yang ◽  
Stephen Yazulla

AbstractThe presence of inhibitory bipolar cells in salamander retina was investigated by a comparative analysis of the distribution of glutamate- and GABA-immunoreactivities (GLU-IR; GABA-IR) using a postembedding immunocytochemical method. GLU-IR was found in virtually all photoreceptors, bipolar cells and ganglion cells, neuronal elements that transfer information vertically through the retina. GLU-IR also was found in numerous amacrine cells in the mid and proximal inner nuclear layer as well as in the cytoplasm of horizontal cells, while the nucleus of horizontal cells was either lightly labeled or not labeled at all. GLU-IR was found in the outer plexiform layer and intensely in the inner plexiform layer, in which there was no apparent sublamination. Forty-seven percent of Type IB bipolar cells in the distal inner nuclear layer and 13% of the displaced bipolar cells were GABA-IR. All bipolar cells were also GLU-IR, indicating that GABA-IR bipolar cells were a subset of GLU-IR bipolar cells rather than a separate population. About 12% of the Type IB bipolar cells were moderately GABA-IR and likely comprised a GABAergic subtype. GLU-IR levels in the presumed GABAergic bipolar cells were higher than in other purely GLU-IR bipolar cells suggesting that these GABA-IR bipolar cells are glutamatergic as well. All of the displaced bipolar cells were only lightly GABA-IR, indicating that displaced bipolar cells comprise a more homogeneous class of glutamatergic cell than orthotopic bipolar cells. GAD-IR co-localized with GABA-IR in orthotopic but not displaced bipolar cells, further supporting the idea that some orthotopic bipolar cells are GABAergic. A small proportion of bipolar cells in salamander retina contain relatively high levels of both GABA and glutamate. Co-release of these substances by bipolar cells could contribute to the “push-pull” modulation of ganglion cell responses.


1992 ◽  
Vol 8 (3) ◽  
pp. 213-218 ◽  
Author(s):  
Stuart C. Mangel ◽  
William J. Brunken

AbstractWe have investigated the effects of a serotonin 5-HT2 antagonist and a 5-HTIA agonist on horizontal and ganglion cells in the rabbit retina. Simultaneous intracellular horizontal cell and extracellular ganglion cell recordings were obtained from a superfused in vitro rabbit eyecup preparation and the effects of bath applied drugs on these cells' light responses observed. Sinusoidally modulated current was also injected into horizontal cells while the extracellular spike activity of nearby, single-unit ganglion cells was monitored. Although the ON components of the light-evoked responses of ganglion cells were reduced by the 5-HT2 antagonist or the 5-HTIA agonist, the membrane potential and the light responses of horizontal cells and the 6-wave of the ERG were simultaneously unaffected. However, the drugs blocked current-driven ganglion cell spike activity induced by current injections into nearby horizontal cells. These results are discussed with respect to the site of action of these serotonin drugs and with respect to the circuitry of serotonergic neurons.


2000 ◽  
Vol 83 (6) ◽  
pp. 3377-3387 ◽  
Author(s):  
Andrey S. Stojic ◽  
Richard D. Lane ◽  
Herbert P. Killackey ◽  
Robert W. Rhoades

Neonatal forelimb removal in rats results in the development of inappropriate hindlimb inputs in the forelimb-stump representation of primary somatosensory cortex (S-I) that are revealed when GABAA and GABAB receptor activity are blocked. Experiments carried out to date have not made clear what information is being suppressed at the level of individual neurons. In this study, three potential ways in which GABA-mediated inhibition could suppress hindlimb expression in the S-I stump representation were evaluated: silencing S-I neurons with dual stump and hindlimb receptive fields, silencing neurons with receptive fields restricted to the hindlimb alone, and/or selective silencing of hindlimb inputs to neurons that normally express a stump receptive field only. These possibilities were tested using single-unit recording techniques to evaluate the receptive fields of S-I forelimb-stump neurons before, during, and after blockade of GABA receptors with bicuculline methiodide (for GABAA) and saclofen (for GABAB). Recordings were also made from normal rats for comparison. Of 92 neurons recorded from the S-I stump representation of neonatally amputated rats, only 2.2% had receptive fields that included the hindlimb prior to GABA receptor blockade. During GABA receptor blockade, 54.3% of these cells became responsive to the hindlimb, and in all but two cases, these same neurons also expressed a stump receptive field. Most of these cells (82.0%) expressed only stump receptive fields prior to GABA receptor blockade. In 71 neurons recorded from normal rats, only 5 became responsive to the hindlimb during GABA receptor blockade. GABA receptor blockade of cortical neurons, in both normal and neonatally amputated rats, resulted in significant enlargements of receptive fields as well as the emergence of receptive fields for neurons that were normally unresponsive. GABA receptor blockade also resulted in increases in both the spontaneous activity and response magnitudes of these neurons. These data support the conclusion that GABA mechanisms generally act to specifically suppress hindlimb inputs to S-I forelimb-stump neurons that normally express a receptive field on the forelimb stump only.


2021 ◽  
Vol 12 ◽  
Author(s):  
Linjiang Lou ◽  
Baskar Arumugam ◽  
Li-Fang Hung ◽  
Zhihui She ◽  
Krista M. Beach ◽  
...  

Purpose: Light affects a variety of non-image forming processes, such as circadian rhythm entrainment and the pupillary light reflex, which are mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs). The purpose of this study was to assess the effects of long- and short-wavelength ambient lighting on activity patterns and pupil responses in rhesus monkeys.Methods: Infant rhesus monkeys were reared under either broadband “white” light (n = 14), long-wavelength “red” light (n = 20; 630 nm), or short-wavelength “blue” light (n = 21; 465 nm) on a 12-h light/dark cycle starting at 24.1 ± 2.6 days of age. Activity was measured for the first 4 months of the experimental period using a Fitbit activity tracking device and quantified as average step counts during the daytime (lights-on) and nighttime (lights-off) periods. Pupil responses to 1 s red (651 nm) and blue (456 nm) stimuli were measured after approximately 8 months. Pupil metrics included maximum constriction and the 6 s post-illumination pupil response (PIPR).Results: Activity during the lights-on period increased with age during the first 10 weeks (p < 0.001 for all) and was not significantly different for monkeys reared in white, red, or blue light (p = 0.07). Activity during the 12-h lights-off period was significantly greater for monkeys reared in blue light compared to those in white light (p = 0.02), but not compared to those in red light (p = 0.08). However, blue light reared monkeys exhibited significantly lower activity compared to both white and red light reared monkeys during the first hour of the lights-off period (p = 0.01 for both) and greater activity during the final hour of the lights-off period (p < 0.001 for both). Maximum pupil constriction and the 6 s PIPR to 1 s red and blue stimuli were not significantly different between groups (p > 0.05 for all).Conclusion: Findings suggest that long-term exposure to 12-h narrowband blue light results in greater disruption in nighttime behavioral patterns compared to narrowband red light. Normal pupil responses measured later in the rearing period suggest that ipRGCs adapt after long-term exposure to narrowband lighting.


1994 ◽  
Vol 103 (6) ◽  
pp. 991-1017 ◽  
Author(s):  
S L Stone

The dynamics of color-coded signal transmission in the light-adapted Xenopus retina were studied by a combination of white noise (Wiener) analysis and simultaneous recordings from two types of horizontal cells: chromatic-type horizontal cells (C-HCs) are hyperpolarized by blue light and depolarized by red light, whereas luminosity-type horizontal cells (L-HCs) are hyperpolarized by all wave-lengths. The retina was stimulated by two superimposed fields of red and blue light modulated by two independent white noise signals, and the resulting intracellular responses were decomposed into red and blue components (first-order kernels). The first-order kernels predict the intracellular responses with a small degree of error (3.5-9.5% in terms of mean square error) under conditions where modulated responses exceeded 30 mV in amplitude peak-to-peak, thus demonstrating that both red and blue modulation responses are linear. Moreover, there is little or no interaction between the red- and blue-evoked responses; i.e., nearly identical first-order kernels were obtained for one color whether the other color was modulated or not. In C-HCs (but not L-HCs), there were consistent differences in the dynamics of the red and blue responses. In the C-HC, the cutoff frequency of the red response was higher than for the blue (approximately 12 vs 5 Hz), and the red kernel was more bandpass than the blue. In the L-HC, kernel waveform and cutoff frequencies were similar for both colors (approximately 12 Hz or greater), and the time-to-peak of the L-HC kernel was always shorter than either the red or blue C-HC kernel. These results have implications for the mechanisms underlying color coding in the distal retina, and they further suggest that nonlinear phenomena, such as voltage-dependent conductances in HCs, do not contribute to the generation of modulation responses under the experimental conditions used here.


2017 ◽  
Author(s):  
Qian Lin ◽  
Suresh Jesuthasan

AbstractLight has the ability to disrupt or mask behavior that is normally controlled by the circadian clock. In mammals, masking requires melanopsin-expressing retinal ganglion cells that detect blue light and project to the thalamus. It is not known whether masking is wavelength-dependent in other vertebrates, nor is it clear what higher circuits are involved. Here, we address these questions in zebrafish. We find that diel vertical migration, a circadian behavior in larval zebrafish, is effectively masked by blue, but not by red light. Two-photon calcium imaging reveals that a retino-recipient thalamic nucleus and a downstream structure, the habenula, are tuned to blue light. Lesioning the habenula inhibits light-evoked climbing. These data suggest that a thalamo-habenula pathway may be involved in the ability of blue light to mask circadian behavior.


2014 ◽  
Vol 9 (11) ◽  
pp. e976158
Author(s):  
Yihai Wang ◽  
Kevin M Folta
Keyword(s):  

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1420
Author(s):  
Takahiro Ueda ◽  
Miki Murata ◽  
Ken Yokawa

Environmental light conditions influence the biosynthesis of monoterpenes in the mint plant. Cyclic terpenes, such as menthol, menthone, pulegone, and menthofuran, are major odor components synthesized in mint leaves. However, it is unclear how light for cultivation affects the contents of these compounds. Artificial lighting using light-emitting diodes (LEDs) for plant cultivation has the advantage of preferential wavelength control. Here, we monitored monoterpene contents in hydroponically cultivated Japanese mint leaves under blue, red, or far-red wavelengths of LED light supplements. Volatile cyclic monoterpenes, pulegone, menthone, menthol, and menthofuran were quantified using the head-space solid phase microextraction method. As a result, all light wavelengths promoted the biosynthesis of the compounds. Remarkably, two weeks of blue-light supplement increased all compounds: pulegone (362% increase compared to the control), menthofuran (285%), menthone (223%), and menthol (389%). Red light slightly promoted pulegone (256%), menthofuran (178%), and menthol (197%). Interestingly, the accumulation of menthone (229%) or menthofuran (339%) was observed with far-red light treatment. The quantification of glandular trichomes density revealed that no increase under light supplement was confirmed. Blue light treatment even suppressed the glandular trichome formation. No promotion of photosynthesis was observed by pulse-amplitude-modulation (PAM) fluorometry. The present result indicates that light supplements directly promoted the biosynthetic pathways of cyclic monoterpenes.


Sign in / Sign up

Export Citation Format

Share Document