Gradient line reaction path of ammonia addition to formaldehyde

1997 ◽  
Vol 7 (5) ◽  
pp. 189-191 ◽  
Author(s):  
Ruslan M. Minyaev ◽  
Evgenii A. Lepin
1994 ◽  
Vol 98 (33) ◽  
pp. 7942-7944 ◽  
Author(s):  
Ruslan M. Minyaev ◽  
David J. Wales

1994 ◽  
Vol 218 (5-6) ◽  
pp. 413-421 ◽  
Author(s):  
Ruslan M. Minyaev ◽  
David J. Wales

Author(s):  
G. M. Michal

Several TEM investigations have attempted to correlate the structural characteristics to the unusual shape memory effect in NiTi, the consensus being the essence of the memory effect is ostensible manifest in the structure of NiTi transforming martensitic- ally from a B2 ordered lattice to a low temperature monoclinic phase. Commensurate with the low symmetry of the martensite phase, many variants may form from the B2 lattice explaining the very complex transformed microstructure. The microstructure may also be complicated by the enhanced formation of oxide or hydride phases and precipitation of intermetallic compounds by electron beam exposure. Variants are typically found in selfaccommodation groups with members of a group internally twinned and the twins themselves are often observed to be internally twinned. Often the most salient feature of a group of variants is their close clustering around a given orientation. Analysis of such orientation relationships may be a key to determining the nature of the reaction path that gives the transformation its apparently perfect reversibility.


1985 ◽  
Vol 50 (7) ◽  
pp. 1594-1601 ◽  
Author(s):  
Jiří Klíma ◽  
Larisa Baumane ◽  
Janis Stradinš ◽  
Jiří Volke ◽  
Romualds Gavars

It has been found that the decay in dimethylformamide and dimethylformamide-water mixtures of radical anions in five of the investigated 5-nitrofurans is governed by a second-order reaction. Only the decay of the radical anion generated from 5-nitro-2-furfural III may be described by an equation including parallel first- and second-order reactions; this behaviour is evidently caused by the relatively high stability of the corresponding dianion, this being an intermediate in the reaction path. The presence of a larger conjugated system in the substituent in position 2 results in a decrease of the unpaired electron density in the nitro group and, consequently, an increase in the stability of the corresponding radical anions.


1985 ◽  
Vol 50 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Jaromír Hlavatý

The o-nitrobenzyl thiocyanate (I) behaves differently on the DME and on a large mercury pool electrode. Polarography did not give a sufficiently clear explanation of the reaction mechanism, only the preparative experiments yielded useful results. Whereas polarographic curves in solutions of Britton-Robinson buffer system with 50% by vol. ethanol exhibit two cathodic waves within the pH region 1-12, corresponding according to their height ratio to an uptake of 4 e and 2 e respectively, the controlled potential preparation electrolysis (CPE) and coulometry results indicate a more complicated reaction path. In the CPE carried out at the concentration of I 1 . 10 -2 mol/l the electroreductive splitting of CH2-SCN occurs as the first step. Nitrobenzyl radicals so formed react in the follow-up dimerization resulting in dibenzyl or toluene structures. Simultaneously or at a later stage the completion of the electrolytic reduction of the nitro group proceeds to the hydroxylamino group. In solution of 9 > pH > 1 the CPE of nitro compound I takes place by an ECEC mechanism yielding dibenzodiazocine III, its N-oxide IV and 2,2'-dimethylazoxybenzene (V). In course of preparative electrolysis in strongly acidic medium 2-amino-benzo(l,3)-thiazine-l-oxide (II) is formed by an EC mechanism.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 662
Author(s):  
Joanna Jójka ◽  
Rafał Ślefarski

This paper details the experimental and numerical analysis of a combustion process for atmospheric swirl burners using methane with added ammonia as fuel. The research was carried out for lean methane–air mixtures, which were doped with ammonia up to 5% and preheated up to 473 K. A flow with internal recirculation was induced by burners with different outflow angles from swirling blades, 30° and 50°, where tested equivalence ratio was 0.71. The NO and CO distribution profiles on specified axial positions of the combustor and the overall emission levels at the combustor outlet were measured and compared to a modelled outcome. The highest values of the NO emissions were collected for 5% NH3 and 50° (1950 ppmv), while a reduction to 1585 ppmv was observed at 30°. The doubling of the firing rates from 15 kW up to 30 kW did not have any great influence on the overall emissions. The emission trend lines were not proportional to the raising share of the ammonia in the fuel. 3D numerical tests and a kinetic study with a reactor network showed that the NO outlet concentration for swirl flame depended on the recirculation ratio, residence time, wall temperature, and the mechanism used. Those parameters need to be carefully defined in order to get highly accurate NO predictions—both for 3D simulations and simplified reactor-based models.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 99
Author(s):  
Guanghao Cheng ◽  
Gurong Shen ◽  
Jun Wang ◽  
Yunhao Wang ◽  
Weibo Zhang ◽  
...  

The present work reports the effects of γ-, θ-phase of alumina on the hydrothermal stability and the properties of non- and strongly-interacting Rh species of the Rh/Al2O3 catalysts. Comparing to γ-Al2O3, θ-Al2O3 can not only reduce the amount of occluded Rh but also better stabilize Rh during hydrothermal aging treatment. When the aging time was prolonged to 70 h, all the non-interacting Rh was transformed into strongly-interacting Rh and occluded Rh. The XPS results indicated that non- and strongly-interacting Rh might exist in the form of Rh/Rh3+ and Rh4+, respectively. CO-NO reaction was chosen as a probe reaction to research more information about non- and strongly-interacting Rh. The two Rh species had similar apparent activation energy (Eapp) of 170 kJ/mol, which indicated that non- and strongly-interacting Rh follow the same reaction path. The non-interacting Rh was removed from aged samples by the acid-treated method, and obtained results showed that only 2.5% and 4.0% non-interacting Rh was maintained in aged Rh/γ-Al2O3 and Rh/θ-Al2O3.


Sign in / Sign up

Export Citation Format

Share Document