scholarly journals Emission Characteristics for Swirl Methane–Air Premixed Flames with Ammonia Addition

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 662
Author(s):  
Joanna Jójka ◽  
Rafał Ślefarski

This paper details the experimental and numerical analysis of a combustion process for atmospheric swirl burners using methane with added ammonia as fuel. The research was carried out for lean methane–air mixtures, which were doped with ammonia up to 5% and preheated up to 473 K. A flow with internal recirculation was induced by burners with different outflow angles from swirling blades, 30° and 50°, where tested equivalence ratio was 0.71. The NO and CO distribution profiles on specified axial positions of the combustor and the overall emission levels at the combustor outlet were measured and compared to a modelled outcome. The highest values of the NO emissions were collected for 5% NH3 and 50° (1950 ppmv), while a reduction to 1585 ppmv was observed at 30°. The doubling of the firing rates from 15 kW up to 30 kW did not have any great influence on the overall emissions. The emission trend lines were not proportional to the raising share of the ammonia in the fuel. 3D numerical tests and a kinetic study with a reactor network showed that the NO outlet concentration for swirl flame depended on the recirculation ratio, residence time, wall temperature, and the mechanism used. Those parameters need to be carefully defined in order to get highly accurate NO predictions—both for 3D simulations and simplified reactor-based models.

2014 ◽  
Vol 71 (2) ◽  
Author(s):  
Chen Wei Kew ◽  
Cheng Tung Chong ◽  
Ng Jo-Han ◽  
Boon Tuan Tee ◽  
Mohamad Nazri Mohd Jaafar

The flame and emission characteristics of a premixed gaseous flame swirl burner are investigated under various equivalence ratio. The swirl flame is established using propane/air mixture at atmospheric condition. Flame imaging was performed to compare the global flame shape and intensity over a range of equivalence ratios and flow rates. Fuel-rich flame shows increased intensity due to the presence of soot formation. The lean blowout test was performed to determine the operating limit of the burner. Emissions of the propane swirl flame were measured at the exit of the burner outlet. Results show that NOx emissions peak at stoichiometric condition, f =1 as compared to the lean- and rich-burning regions. Carbon monoxide (CO) and unburned hydrocarbons (UHC) emissions were found to be low (< 10 ppm) under premixed, continuous swirl burning conditions for the equivalence ratio range of f = 0.7-1.1.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1342
Author(s):  
Van Chien Pham ◽  
Jae-Hyuk Choi ◽  
Beom-Seok Rho ◽  
Jun-Soo Kim ◽  
Kyunam Park ◽  
...  

This paper presents research on the combustion and emission characteristics of a four-stroke Natural gas–Diesel dual-fuel marine engine at full load. The AVL FIRE R2018a (AVL List GmbH, Graz, Austria) simulation software was used to conduct three-dimensional simulations of the combustion process and emission formations inside the engine cylinder in both diesel and dual-fuel mode to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results were then compared and showed a good agreement with the measured values reported in the engine’s shop test technical data. The simulation results showed reductions in the in-cylinder pressure and temperature peaks by 1.7% and 6.75%, while NO, soot, CO, and CO2 emissions were reduced up to 96%, 96%, 86%, and 15.9%, respectively, in the dual-fuel mode in comparison with the diesel mode. The results also show better and more uniform combustion at the late stage of the combustions inside the cylinder when operating the engine in the dual-fuel mode. Analyzing the emission characteristics and the engine performance when the injection timing varies shows that, operating the engine in the dual-fuel mode with an injection timing of 12 crank angle degrees before the top dead center is the best solution to reduce emissions while keeping the optimal engine power.


2003 ◽  
Vol 4 (3) ◽  
pp. 163-177 ◽  
Author(s):  
P. A. Caton ◽  
A. J. Simon ◽  
J. C. Gerdes ◽  
C. F. Edwards

Studies have been conducted to assess the performance of homogeneous charge compression ignition (HCCI) combustion initiated by exhaust reinduction from the previous engine cycle. Reinduction is achieved using a fully flexible electrohydraulic variable-valve actuation system. In this way, HCCI is implemented at low compression ratio without throttling the intake or exhaust, and without preheating the intake charge. By using late exhaust valve closing and late intake valve opening strategies, steady HCCI combustion was achieved over a range of engine conditions. By varying the timing of both valve events, control can be exerted over both work output (load) and combustion phasing. In comparison with throttled spark ignition (SI) operation on the same engine, HCCI achieved 25–55 per cent of the peak SI indicated work, and did so at uniformly higher thermal efficiency. This was accompanied by a two order of magnitude reduction in NO emissions. In fact, single-digit (ppm) NO emissions were realized under many load conditions. In contrast, hydrocarbon emissions proved to be significantly higher in HCCI combustion under almost all conditions. Varying the equivalence ratio showed a wider equivalence ratio tolerance at low loads for HCCI.


Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating

Abstract Numerical simulation of flow, combustion, heat release rate and pollutants emission characteristics have been obtained using a single cylinder internal combustion engine operating with propane as the fuel. The data are compared with experimental results and show excellent agreement for peak pressure and the rate of pressure rise as a function of crank angle. The results obtained for NO and CO are also found to be in good agreement and are similar to those reported in the literature for the chosen combustion chamber geometry. The results have shown that both the combustion chamber geometry and engine operating parameters affects the flame growth within the combustion chamber which subsequently affects the pollutants emission levels. The code employed the time marching procedure and solves the governing partial differential equations of multi-component chemically reacting fluid flow by finite difference method. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


Author(s):  
Tamilvanan A. ◽  
K. Balamurugan ◽  
T. Mohanraj ◽  
P. Selvakumar ◽  
B. Ashok ◽  
...  

Biodiesel is proven to be the best substitute for petroleum-based conventional diesel fuel in existing engines with or without minor engine modifications. The performance characteristics of biodiesel as a fuel in CI engine are slightly lower than that of diesel fuel. The emission characteristics of biodiesel are better than diesel fuel except NOX emission. The thermo-physical properties of biodiesel are improved by suspending the nano metal particles in the biodiesel, which make them an observable choice for the use of nanoparticles-added fuels in CI engine. High surface area of nanoparticles that promotes higher operating pressure and heat transfer rates that further quicken the combustion process by providing better oxidation. Thus, it has been inferred that addition of nanoparticles as an additive to biodiesel fuel blends in diesel engines and its effects on performance, combustion, and emission characteristics are discussed in this chapter.


2018 ◽  
Vol 8 (12) ◽  
pp. 2667
Author(s):  
Antonio Mariani ◽  
Andrea Unich ◽  
Mario Minale

The paper describes a numerical study of the combustion of hydrogen enriched methane and biogases containing hydrogen in a Controlled Auto Ignition engine (CAI). A single cylinder CAI engine is modelled with Chemkin to predict engine performance, comparing the fuels in terms of indicated mean effective pressure, engine efficiency, and pollutant emissions. The effects of hydrogen and carbon dioxide on the combustion process are evaluated using the GRI-Mech 3.0 detailed radical chain reactions mechanism. A parametric study, performed by varying the temperature at the start of compression and the equivalence ratio, allows evaluating the temperature requirements for all fuels; moreover, the effect of hydrogen enrichment on the auto-ignition process is investigated. The results show that, at constant initial temperature, hydrogen promotes the ignition, which then occurs earlier, as a consequence of higher chemical reactivity. At a fixed indicated mean effective pressure, hydrogen presence shifts the operating range towards lower initial gas temperature and lower equivalence ratio and reduces NOx emissions. Such reduction, somewhat counter-intuitive if compared with similar studies on spark-ignition engines, is the result of operating the engine at lower initial gas temperatures.


Author(s):  
Yeshayahou Levy ◽  
Vladimir Erenburg ◽  
Valery Sherbaum ◽  
Vitali Ovcharenko ◽  
Leonid Rosentsvit ◽  
...  

Lean premixed combustion is one of the widely used methods for NOx reduction in gas turbines (GT). When this method is used combustion takes place under low Equivalence Ratio (ER) and at relatively low combustion temperature. While reducing temperature decreases NOx formation, lowering temperature reduces the reaction rate of the hydrocarbon–oxygen reactions and deteriorates combustion stability. The objective of the present work was to study the possibility to decrease the lower limit of the stable combustion regime by the injection of free radicals into the combustion zone. A lean premixed gaseous combustor was designed to include a circumferential concentric pilot flame. The pilot combustor operates under rich fuel to air ratio, therefore it generates a significant amount of reactive radicals. The experiments as well as CFD and CHEMKIN simulations showed that despite of the high temperatures obtained in the vicinity of the pilot ring, the radicals’ injection from the pilot combustor has the potential to lower the limit of the global ER (and temperatures) while maintaining stable combustion. Spectrometric measurements along the combustor showed that the fuel-rich pilot flame generates free radicals that augment combustion stability. In order to study the relevant mechanisms responsible for combustion stabilization, CHEMKIN simulations were performed. The developed chemical network model took into account some of the basic parameters of the combustion process: ER, residence time, and the distribution of the reactances along the combustor. The CHEMKIN simulations showed satisfactory agreement with experimental results.


Sign in / Sign up

Export Citation Format

Share Document