Pests of Field Crops and Pastures

This comprehensive handbook on economic entomology for Australian field crops and pastures is the first of its kind. It encompasses pests and beneficial insects as well as allied forms of importance in Australian agriculture. Organised by commodities – such as cereals, sugar and tropical pasture legumes – it examines all the pest species for a particular commodity across Australia. Identification, distribution, damage, host range, biology, risk period and monitoring techniques are described for each entry, accompanied by useful illustrations. The book also describes introduced biological control agents that effectively control crop pests. Pests of Field Crops and Pastures will be a useful tool in crop management for progressive farmers, agronomists, agricultural consultants and academics alike.

1987 ◽  
Vol 33 (10) ◽  
pp. 850-856 ◽  
Author(s):  
G. Vannacci ◽  
G. E. Harman

Forty-two microorganisms were tested as biological control agents against Alternaria raphani and A. brassicicola. Tests were conducted for in vitro antagonistic ability, for ability to control the pathogens on naturally infected seeds germinated on moistened blotters, and in planting mix in growth chamber studies, and for their ability to reduce pod infection. The organisms tested were obtained from cruciferous seeds or were strains already identified as being effective against soil-borne Pythium species. The blotter test indicated that six organisms increased both the number of healthy seedlings and the number of seedlings produced from A. raphani infected radish seeds. An additional seven strains improved either germination or increased the number of healthy seedlings. Twenty-nine organisms increased the number of healthy cabbage seedlings from A. brassicicola infected seeds, but total germination was not modified by any treatment. Experiments in planting mix showed that five antagonists (Chaetomium globosum, two strains of Trichoderma harzianum, T. koningii, and Fusarium sp.) increased the number of healthy plants in both radish samples tested, while four additional antagonists provided a significant increase in only one of the samples tested. The five antagonists that consistently increased numbers of healthy radish seedlings also decreased pod infection by A. raphani. None were as effective as iprodrone, however. Several effective antagonists were found to be mycoparasitic against Alternaria spp. Some strains of Trichoderma previously found to be effective against Pythium spp. were also effective against Alternaria spp., indicating that these strains have a wide host range.


Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 653
Author(s):  
Susan A. Wineriter-Wright ◽  
Melissa C. Smith ◽  
Mark A. Metz ◽  
Jeffrey R. Makinson ◽  
Bradley T. Brown ◽  
...  

Rhodomyrtus tomentosa is a perennial shrub native to Southeast Asia and is invasive in South Florida and Hawai’i, USA. During surveys of R. tomentosa in Hong Kong from 2013–2018 for potential biological control agents, we collected larvae of the stem borer, Casmara subagronoma. Larvae were shipped in stems to a USDA-ARS quarantine facility where they were reared and subjected to biology studies and preliminary host range examinations. Casmara subagronoma is the most recent Casmara species to be described from males collected in Vietnam and Indonesia. Because the original species description was based on only two male specimens, we also provide a detailed description of the female, egg, larva, and pupa. Finally, we conducted preliminary host range trials utilizing Myrtus communis, Myrcianthes fragrans, and Camellia sinensis. Casmara subagronoma emerged from M. fragrans, a Florida-native shrub, and larvae were able to survive in non-target stems for over a year (>400 days). Based on these findings and difficulty in rearing, we do not believe C. subagronoma is a suitable insect for biological control of R. tomentosa at this time, but may warrant further study. This investigation also illustrates the importance of host surveys for conservation and taxonomic purposes.


2016 ◽  
Vol 148 (S1) ◽  
pp. S239-S269 ◽  
Author(s):  
Chris J.K. MacQuarrie ◽  
D.B. Lyons ◽  
M. Lukas Seehausen ◽  
Sandy M. Smith

AbstractBiological control has been an important tactic in the management of Canadian forests for over a century, but one that has had varied success. Here, we review the history of biological control programmes using vertebrate and invertebrate parasitoids and predators against insects in Canadian forests. Since roughly 1882, 41 insect species have been the target of biological control, with approximately equal numbers of both native and non-native species targeted. A total of 161 species of biological control agents have been released in Canadian forests, spanning most major orders of insects, as well as mites and mammals. Biological control has resulted in the successful suppression of nine pest species, and aided in the control of an additional six species. In this review, we outline the chronological history of major projects across Canadian forests, focussing on those that have had significant influence for the development of biological control. The historical data clearly illustrate a rise and fall in the use of biological control as a tactic for managing forest pests, from its dominance in the 1940s and 1950s to its current low level. The strategic implementation of these biological control programmes, their degree of success, and the challenges faced are discussed, along with the discipline’s shifting relationship to basic science and the environmental viewpoints surrounding its use.


1995 ◽  
Vol 85 (4) ◽  
pp. 507-513 ◽  
Author(s):  
G.C. Marris ◽  
J.P. Edwards

AbstractThere is a need to identify potential biological control agents for use against noctuid pests in greenhouses. The gregarious ectoparasitoid Eulophus pennicornis (Nees) attacks a limited range of macrolepidopterous larvae, including those of some important horticultural pest species. Laboratory trials designed to investigate the biology of E. pennicornis on larvae of the tomato moth, Lacanobia oleracea Linnaeus, reveal that wasps preferentially parasitize penulitmate (fifth) or final (sixth) instar hosts. More than two-thirds of wasps lay viable eggs, and individual females oviposit on up to four hosts during their lifespan. Wasp fecundity is high, preadult development is rapid, and offspring show a markedly female-biased sex ratio. Parasitized fifth instar L.oleracea hosts do not grow as quickly as unparasitized larvae, and neither do they undergo normal ecdysis to the final larval stadium. Furthermore, the consumption of artificial diet by parasitized fifth instar hosts is greatly reduced in comparison to that of unparasitized larvae (overall feeding-reduction over a 12 day period was 64.7%). Our results suggest that E. pennicornis affects both the developmental and feeding physiology of host larvae, and that inoculative releases of this parasitoid could provide effective biological control for L. oleracea and other greenhouse pests.


Author(s):  
Gerasimos GRAMMENOS ◽  
Varvara KOUNELI ◽  
Antonios MAVROEIDIS ◽  
Ioannis ROUSSIS ◽  
Ioanna KAKABOUKI ◽  
...  

A greenhouse cannabis cultivation took place in Agriculture university of Athens in order to quantify the efficiency of beneficial insects as a main method of pest management. Cannabis plants grown in two greenhouses and beneficial insects were released only in one greenhouse as a means to investigate the efficacy against pests by the comparison with the control greenhouse. Measurements included the visual estimation of infestation, the recording of pest species and populations, and the comparison of infestations and yields amongst greenhouses. Our results indicate that beneficial insects could control pest populations up to 100%. Even though the environmental conditions were not optimal and consecutive pest infestations were observed throughout the duration of our study, the beneficial insects successfully managed the pest populations. In conclusion, biological control with beneficial insects is a very effective method for pest management in greenhouse cannabis production.


Sign in / Sign up

Export Citation Format

Share Document