scholarly journals Beneficial Insects for Biological Pest Control in Greenhouse Cannabis Production

Author(s):  
Gerasimos GRAMMENOS ◽  
Varvara KOUNELI ◽  
Antonios MAVROEIDIS ◽  
Ioannis ROUSSIS ◽  
Ioanna KAKABOUKI ◽  
...  

A greenhouse cannabis cultivation took place in Agriculture university of Athens in order to quantify the efficiency of beneficial insects as a main method of pest management. Cannabis plants grown in two greenhouses and beneficial insects were released only in one greenhouse as a means to investigate the efficacy against pests by the comparison with the control greenhouse. Measurements included the visual estimation of infestation, the recording of pest species and populations, and the comparison of infestations and yields amongst greenhouses. Our results indicate that beneficial insects could control pest populations up to 100%. Even though the environmental conditions were not optimal and consecutive pest infestations were observed throughout the duration of our study, the beneficial insects successfully managed the pest populations. In conclusion, biological control with beneficial insects is a very effective method for pest management in greenhouse cannabis production.

Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 533
Author(s):  
Frédéric Francis ◽  
Hans Jacquemyn ◽  
Frank Delvigne ◽  
Bart Lievens

Integrated pest management (IPM) is today a widely accepted pest management strategy to select and use the most efficient control tactics and at the same time reduce over-dependence on chemical insecticides and their potentially negative environmental effects. One of the main pillars of IPM is biological control. While biological control programs of pest insects commonly rely on natural enemies such as predatory insects, parasitoids and microbial pathogens, there is increasing evidence that plant, soil and insect microbiomes can also be exploited to enhance plant defense against herbivores. In this mini-review, we illustrate how microorganisms from diverse origins can contribute to plant fitness, functional traits and indirect defense responses against pest insects, and therefore be indirectly used to improve biological pest control practices. Microorganisms in the rhizosphere, phyllosphere and endosphere have not only been shown to enhance plant growth and plant strength, but also promote plant defense against herbivores both above- and belowground by providing feeding deterrence or antibiosis. Also, herbivore associated molecular patterns may be induced by microorganisms that come from oral phytophagous insect secretions and elicit plant-specific responses to herbivore attacks. Furthermore, microorganisms that inhabit floral nectar and insect honeydew produce volatile organic compounds that attract beneficial insects like natural enemies, thereby providing indirect pest control. Given the multiple benefits of microorganisms to plants, we argue that future IPMs should consider and exploit the whole range of possibilities that microorganisms offer to enhance plant defense and increase attraction, fecundity and performance of natural enemies.


1989 ◽  
Vol 121 (10) ◽  
pp. 829-840 ◽  
Author(s):  
Heikki M.T. Hokkanen ◽  
David Pimentel

AbstractThe new association approach for selecting biological control agents has been reanalyzed in the light of recent data. The results support the conclusion that the new association approach is ecologically and statistically sound. One of the major advantages of this approach is its capacity to control native pests, which make up 60–80% of all pests. The specificity of biocontrol agents newly associated with the target hosts is similar to other biocontrol agents. In addition, the new association approach is as safe as the old association approach in terms of environmental risks. Recent trials in the use of new associations have been most encouraging, and suggest that this approach should contribute to the future success of biological pest control worldwide.


2020 ◽  
Vol 4 ◽  
Author(s):  
Randa Jabbour ◽  
Shiri Noy

Pest management strategies involve a complex set of considerations, circumstances, and decision-making. Existing research suggests that farmers are reflexive and reflective in their management choices yet continue to employ curative rather than preventative strategies, and opt for chemical over biological solutions. In this piece, we detail work from a two-year, multidisciplinary, mixed-methods study of insect pest management strategies in alfalfa in Wyoming, integrating data from four focus groups, a statewide survey, and biological sampling of production fields. We outline how these different sources of data together contribute to a more complete understanding of the challenges and strategies employed by farmers, and specifically on biological pest control. We applied this approach across alfalfa hay and seed crop systems. Relatively few farmers acknowledged biological control in focus groups or surveys, yet biological exploration yielded abundant parasitism of common pest alfalfa weevil. On the other hand, parasitism of seed alfalfa pest Lygus was far less common and patchy across fields. It is only in integrating quantitative and qualitative, biological and social data that we are able to generate a more complete portrait of the challenges and opportunities of working with farmers to embrace a preventative paradigm. In doing so, we offer insights on possible barriers to the adoption of preventative insect management strategies and provide a case study of integrating social science and biophysical techniques to better understand opportunities to expand biological pest control in cropping systems.


2019 ◽  
Vol 11 (18) ◽  
pp. 187
Author(s):  
Felipe Tascheto Bolzan ◽  
Diego Nicolau Follmann ◽  
Camila Bisognin Meneghetti ◽  
Leila Cássia Picon ◽  
Ana Lúcia de Paula Ribeiro

The areas of maize production harbor a high number of insect species, some of which are considered pests that cause damage to the crop. The methods of pest control have been a cause of concern for the society since the use of chemicals and the environmental problems arising from this practice indicate the need to search for alternatives to control. In this sense, it is necessary to seek an agricultural production system that contemplates environmental sustainability and promotes biodiversity in the Agrosystem, among which the use of biological agents is highlighted. The objective of this research was to update through a bibliographic review the advances in the literature on biological control of maize crop pests. For the development of this article, we used the method of approach the analytical and as procedural method the monographic, through bibliographic research, using specialized doctrines, appropriate to the object of the study and legislations. Because of the observed aspects, it is possible to conclude that the group of natural enemies that act as biological control agents is formed by parasitoids, predators and entomopathogenic microorganisms. The rationalization of the use of chemicals should be associated with the use of biodefensives in integrated pest management. Advances in the legislation of biological products in Brazil are fundamental to give speed to the registration of new alternatives of biological control, aimed at the safety of the environment, human health and that are generated without the exploratory use of biodiversity.


2010 ◽  
Vol 8 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Anna Augustyniuk-Kram

Fungal entomopathogens are widespread in nature and contribute to the natural regulation of insects. They can be exploited for pest management as biological control agents of pests in attempts to improve the sustainability of crop protection. Four types of biological control are recognized: classical, inoculation, inundation, and conservation biological control. Classical biological control is the intentional introduction and permanent establishment of an exotic biological agent for long-term pest management. Inoculation biological control is the intentional release of a living organism as a biological control agent with the expectation that it will multiply and control the pest for an extended period, but not permanently. Inundation biological control is the release of large numbers of mass-produced biological control agents to reduce a pest population without necessarily achieving continuing impact or establishment. Conservation biological control is a modification of the environment or existing practices to protect and enhance specific natural enemies or other organisms to reduce the effect of pests. The traditional and the most popular approach in biological control with entomopathogenic fungi has been to apply the fungal material to the cropping system (as biopesticide), using an inundation biological control strategy. The term biopesticide is used for microbial biological pest control agents that are applied in a similar manner to chemical pesticides. The use of biopesticides can substitute for some (but not all) chemicals and provide environmentally safe and sustainable control of pests but EU legislation and prohibitive registration costs are discouraging the development and commercialization of many promising new products.


2015 ◽  
Vol 68 ◽  
pp. 306-312 ◽  
Author(s):  
P.L. Lo ◽  
J.T.S. Walker ◽  
D.J. Rogers

Pest management in New Zealands pipfruit Integrated Fruit Production (IFP) programme relies on selective pesticides biological control and pheromone mating disruption The current situation is potentially precarious and one concern the impact of less selective pesticides was tested Apple trees received synthetic pyrethroid (deltamethrin) sprays during the first half of two growing seasons Beneficial and pest species were monitored monthly from November to April Treated trees had fewer predatory bugs (91 100 reduction) lacewings (64100) earwigs (80100) predatory mites (67100) spiders (2064) and Hymenoptera (1649) than untreated trees Ladybird numbers varied depending on the assessment method Outbreaks of phytophagous mites and woolly scale and Froggatts apple leafhopper on untreated trees Factors that make pest management under IFP vulnerable in the future include a loss of biological control and the consequences of new pests establishing


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gema Trigos-Peral ◽  
Orsolya Juhász ◽  
Péter János Kiss ◽  
Gábor Módra ◽  
Anna Tenyér ◽  
...  

AbstractClimate change is one of the major threats to biodiversity, but its impact varies among the species. Bark beetles (Ips spp.), as well as other wood-boring pests of European forests, show escalating numbers in response to the changes driven by climate change and seriously affect the survival of the forests through the massive killing of trees. Many methods were developed to control these wood-boring beetles, however, their implementation can be detrimental for other forest specialists. Ants are widely used for biological pest-control, so in our study, we aimed to test the effect of Formica polyctena on the control of the wood-boring beetles. The results show that the proportion of infested trees is significantly reduced by the increase of the number of F. polyctena nests, with a strong effect on those infested by Ips species. We also show that the boring beetle community is shaped by different biotic and abiotic factors, including the presence of F. polyctena nests. However, the boring beetle infestation was not related to the latitude, altitude and age of the forests. Based on our results, we assert the effectiveness of the red wood ants as biological pest control and the importance of their conservation to keep the health of the forests.


Author(s):  
Joakim Pålsson ◽  
Mario Porcel ◽  
Teun Dekker ◽  
Marco Tasin

AbstractThe widespread use of pesticides along with the simplification of the landscape has had undesirable effects on agroecosystems, such as the loss of biodiversity and the associated ecosystem service biological control. How current production systems can be remodelled to allow for a re-establishment of biological pest control, while preserving productivity, is a major challenge. Here, we tested whether a combination of tools could augment or synergize biological control of insect pests in apple (Malus domestica), comprised of a tortricid pest complex, a geometrid pest complex and the rosy apple aphid. The tools aimed at disrupting mating behaviour of multiple pest species (multispecies mating disruption, “Disrupt”, MMD), attracting natural enemies (a blend of herbivory-induced volatiles, “Attract”, A), or providing refuge and rewards for a diverse insect community (perennial flower strip, “Reward”, R) over a 3-year period. Suction samples were consistently richer in generalist predators but not in parasitoids when multiple tools including MMD + A + R or MMD + A were employed. In addition, lepidopteran pest levels were significantly lower in these plots than in MMD or MMD + R at the end of the 3-year experiment. This was, however, not reflected in survival of artificially established aphid colonies. Our data indicates that multiple, complementary tools can greatly enhance natural enemy level, but also that long-term implementation is needed to fully realize the augmentatory or synergistic potential of complementary components and restore biological control as an ecosystem service of practical relevance.


Author(s):  
Ivana Lemos Souza ◽  
Hágabo Honorato de Paulo ◽  
Érica Ayumi Taguti ◽  
Nilza Maria Martinelli

Abstract Parasitoids can be used as biological agents of pest control. Anagyrus saccharicola Timberlake (Hymenoptera: Encyrtidae) is a parasitoid of the pink sugarcane mealybug Saccharicoccus sacchari (Cockerell) (Hemiptera: Pseudococcidae). Although this mealybug is present in all sugarcane-producing countries, there is limited information regarding this pest and its parasitoid. Aiming to elucidate information on bioecological parameters of A. saccharicola, were evaluated the survival of parasitoid females and males at three temperatures, the host preference of the parasitoid, and the fecundity and longevity of the host. In addition, the parasitism rate of A. saccharicola was estimated based on three factors, feeding, mating, and time. Survival was evaluated at 20, 25, and 30°C. Host preference was conducted on 15-, 20-, and 30-day-old mealybugs. And the parasitism rate was evaluated in fed and unfed, mated and unmated parasitoids and with 24 h and newly emerged. The temperature of 20°C was the most favorable for parasitoid survival. Parasitism occurred at all evaluated ages of the mealybug; however, the preference was for those that were 30-days-old. The parasitized mealybugs longevity was approximately 8 additional days after parasitization, and non-parasitized mealybugs lived for an additional 20 days for mealybugs aged 30 and 20 days at the outset of the tests, and a further 13 days for the 15 days. Feeding and mating after 24 h of emergence resulted in a higher parasitism rate. These findings can contribute to more efficient rearing of A. saccharicola and in the planning of the biological control of S. sacchari in the integrated pest management programs.


Sign in / Sign up

Export Citation Format

Share Document