Dynamics of biologically fixed N in legume-cereal rotations: a review

1998 ◽  
Vol 49 (3) ◽  
pp. 303 ◽  
Author(s):  
P. M. Chalk

Agronomically significant N yield responses of cereals following grain legumes compared with cereal monoculture are frequently measured. The positive N response of the cereal has been attributed to the transfer of biologically fixed N, to N-sparing under the antecedent legume, and to less immobilisation of nitrate during the decomposition of legume residues. Methods for estimating the transfer of biologically fixed N in rotations, and for separating the N benefit into fixed N and non-fixed N components, are reviewed. Available data indicate that both sources of N contribute to the N benefit. The role of the grain legume in the gain or drain of soil N is evaluated by considering the balance between symbiotic dependence and N harvest index, as well as long-term changes in total soil N. Several 15N-based techniques for direct estimation of inputs of biologically fixed N to the soil N pool are reviewed. N balances in grain legume-cereal rotations may be positive or negative depending on the legume species, symbiotic performance, and agronomic factors.

1996 ◽  
Vol 127 (3) ◽  
pp. 347-363 ◽  
Author(s):  
M. J. Glendining ◽  
D. S. Powlson ◽  
P. R. Poulton ◽  
N. J. Bradbury ◽  
D. Palazzo ◽  
...  

SUMMARYThe Broadbalk Wheat Experiment at Rothamsted (UK) includes plots given the same annual applications of inorganic nitrogen (N) fertilizer each year since 1852 (48, 96 and 144 kg N/ha, termed N1 N2 and N3 respectively). These very long-term N treatments have increased total soil N content, relative to the plot never receiving fertilizer N (N0), due to the greater return of organic N to the soil in roots, root exudates, stubble, etc (the straw is not incorporated). The application of 144 kg N/ha for 135 years has increased total soil N content by 21%, or 570 kg/ha (0–23 cm). Other plots given smaller applications of N for the same time show smaller increases; these differences were established within 30 years. Increases in total soil N content have been detected after 20 years in the plot given 192 kg N/ha since 1968 (N4).There was a proportionally greater increase in N mineralization. Crop uptake of mineralized N was typically 12–30 kg N/ha greater from the N3 and N4 treatments than the uptake of c. 30 kg N/ha from the N0 treatment. Results from laboratory incubations show the importance of recently added residues (roots, stubble, etc) on N mineralization. In short-term (2–3 week) incubations, with soil sampled at harvest, N mineralization was up to 60% greater from the N3 treatment than from N0. In long-term incubations, or in soil without recently added residues, differences between long-term fertilizer treatments were much less marked. Inputs of organic N to the soil from weeds (principally Equisetum arvense L.) to the N0–N2 plots over the last few years may have partially obscured any underlying differences in mineralization.The long-term fertilizer treatments appeared to have had no effect on soil microbial biomass N or carbon (C) content, but have increased the specific mineralization rate of the biomass (defined as N mineralized per unit of biomass).Greater N mineralization will also increase losses of N from the system, via leaching and gaseous emissions. In December 1988 the N3 and N4 plots contained respectively 14 and 23 kg/ha more inorganic N in the profile (0–100 cm) than the N0 plot, due to greater N mineralization. These small differences are important as it only requires 23 kg N/ha to be leached from Broadbalk to increase the nitrate concentration of percolating water above the 1980 EC Drinking Water Quality Directive limit of 11·3mgN/l.The use of fertilizer N has increased N mineralization due to the build-up of soil organic N. In addition, much of the organic N in Broadbalk topsoil is now derived from fertilizer N. A computer model of N mineralization on Broadbalk estimated that after applying 144 kg N/ha for 140 years, up to half of the N mineralized each year was originally derived from fertilizer N.In the short-term, the amount of fertilizer N applied usually has little direct effect on losses of N over winter. In most years little fertilizer-derived N remains in Broadbalk soil in inorganic form at harvest from applications of up to 192 kg N/ha. However, in two very dry years (1989 and 1990) large inorganic N residues remained at harvest where 144 and 192 kg N/ha had been applied, even though the crop continued to respond to fertilizer N, up to at least 240 kg N/ha.


1971 ◽  
Vol 51 (3) ◽  
pp. 431-437 ◽  
Author(s):  
S. U. KHAN

A study was undertaken to determine long-term effects of two cropping systems and various fertilizer treatments on the distribution of N in a Gray Wooded soil of Alberta. The relative amount (expressed as percent of total soil N) of total acid hydrolyzable N in soils from plots in the five-year rotation of grains and legumes was significantly greater than in the wheat-fallow sequence. A similar effect was also noted from the proportion of soil N present in the form of amino sugar N, amino acid N, hydroxyamino acid N and unidentified N in the acid hydrolyzates. The relative amounts of ammonium N in the acid hydrolyzate, the non-hydrolyzable N and the non-exchangeable ammonium N in soil were greater in the wheat-fallow plot soils than in the rotation. The relative amount of total hydrolyzable N was significantly lower in the manure, NPKS, NS, lime or P treated soils than in the control. The proportion of amino sugar N increased following the manure treatment. Long-term application of mineral fertilizers had no significant effect upon the percentage distribution of the different forms of hydrolyzable soil N and the non-exchangeable ammonium N in the soil. The relative distribution of amino acids was not affected by the two cropping systems or various fertilizer treatments, but differences were noted in the absolute amounts.


2001 ◽  
Vol 1 ◽  
pp. 673-681 ◽  
Author(s):  
Alan J. Franzluebbers ◽  
John A. Stuedemann

The fate of nitrogen (N) applied in forage-based agricultural systems is important for understanding the long-term production and environmental impacts of a particular management strategy. We evaluated the factorial combination of three types of N fertilization (inorganic, crimson clover [Trifolium incarnatum L.] cover crop plus inorganic, and chicken [Gallus gallus] broiler litter pressure and four types of harvest strategy (unharvested forage, low and high cattle [Bos Taurus] grazing pressure, and monthly haying in summer) on surface residue and soil N pools during the first 5 years of ̒Coastal̓ bermudagrass (Cynodon dactylon [L.] Pers.) management. The type of N fertilization used resulted in small changes in soil N pools, except at a depth of 0 to 2 cm, where total soil N was sequestered at a rate 0.2 g ‧ kg–1‧ year–11 greater with inorganic fertilization than with other fertilization strategies. We could account for more of the applied N under grazed systems (76–82%) than under ungrazed systems (35–71%). As a percentage of applied N, 32 and 48% were sequestered as total soil N at a depth of 0 to 6 cm when averaged across fertilization strategies under low and high grazing pressures, respectively, which was equivalent to 6.8 and 10.3 g ‧ m–2‧ year–1. Sequestration rates of total soil N under the unharvested-forage and haying strategies were negligible. Most of the increase in total soil N was at a depth of 0 to 2 cm and was due to changes in the particulate organic N (PON) pool. The greater cycling of applied N into the soil organic N pool with grazed compared with ungrazed systems suggests an increase in the long-term fertility of soil.


Soil Science ◽  
1977 ◽  
Vol 124 (2) ◽  
pp. 110-116 ◽  
Author(s):  
V. W. MEINTS ◽  
L. T. KURTZ ◽  
S. W. MELSTED ◽  
T. R. PECK

2012 ◽  
Vol 63 (6) ◽  
pp. 501 ◽  
Author(s):  
Thomas R. Sinclair ◽  
Vincent Vadez

Grain legume production is increasing worldwide due to their use directly as human food, feed for animals, and industrial demands. Further, grain legumes have the ability to enhance the levels of nitrogen and phosphorus in cropping systems. Considering the increasing needs for human consumption of plant products and the economic constraints of applying fertiliser on cereal crops, we envision a greater role for grain legumes in cropping systems, especially in regions where accessibility and affordability of fertiliser is an issue. However, for several reasons the role of grain legumes in cropping systems has often received less emphasis than cereals. In this review, we discuss four major issues in increasing grain legume productivity and their role in overall crop production: (i) increased symbiotic nitrogen fixation capacity, (ii) increased phosphorus recovery from the soil, (iii) overcoming grain legume yield limitations, and (iv) cropping systems to take advantage of the multi-dimensional benefits of grain legumes.


2001 ◽  
Vol 41 (3) ◽  
pp. 347 ◽  
Author(s):  
J. Evans ◽  
A. M. McNeill ◽  
M. J. Unkovich ◽  
N. A. Fettell ◽  
D. P. Heenan

The removal of nitrogen (N) in grain cereal and canola crops in Australia exceeds 0.3 million t N/year and is increasing with improvements in average crop yields. Although N fertiliser applications to cereals are also rising, N2-fixing legumes still play a pivotal role through inputs of biologically fixed N in crop and pasture systems. This review collates Australian data on the effects of grain legume N2 fixation, the net N balance of legume cropping, summarises trends in the soil N balance in grain legume–cereal rotations, and evaluates the direct contribution of grain legume stubble and root N to wheat production in southern Australia. The net effect of grain legume N2 fixation on the soil N balance, i.e. the difference between fixed N and N harvested in legume grain (Nadd) ranges widely, viz. lupin –29–247 kg N/ha (mean 80), pea –46–181 kg N/ha (mean 40), chickpea –67–102 kg N/ha (mean 6), and faba bean 8–271 kg N/ha (mean 113). Nadd is found to be related to the amount (Nfix) and proportion (Pfix) of crop N derived from N2 fixation, but not to legume grain yield (GY). When Nfix exceeded 30 (lupin), 39 (pea) and 49 (chickpea) kg N/ha the N balance was frequently positive, averaging 0.60 kg N/kg of N fixed. Since Nfix increased with shoot dry matter (SDM) (21 kg N fixed/t SDM; pea and lupin) and Pfix (pea, lupin and chickpea), increases in SDM and Pfix usually increased the legume’s effect on soil N balance. Additive effects of SDM, Pfix and GY explained most (R2 = 0.87) of the variation in Nadd. Using crop-specific models based on these parameters the average effects of grain legumes on soil N balance across Australia were estimated to be 88 (lupin), 44 (pea) and 18 (chickpea) kg N/ha. Values of Nadd for the combined legumes were 47 kg N/ha in south-eastern Australia and 90 kg N/ha in south-western Australia. The average net N input from lupin crops was estimated to increase from 61 to 79 kg N/ha as annual rainfall rose from 445 to 627 mm across 3 shires in the south-east. The comparative average input from pea was 37 to 47 kg N/ha with least input in the higher rainfall shires. When the effects of legumes on soil N balance in south-eastern Australia were compared with average amounts of N removed in wheat grain, pea–wheat (1:1) sequences were considered less sustainable for N than lupin–wheat (1:1) sequences, while in south-western Australia the latter were considered sustainable. Nitrogen mineralised from lupin residues was estimated to contribute 40% of the N in the average grain yield of a following wheat crop, and that from pea residues, 15–30%; respectively, about 25 and 15 kg N/ha. Therefore, it was concluded that the majority of wheat N must be obtained from pre-existing soil sources. As the amounts above represented only 25–35% of the total N added to soil by grain legumes, the residual amount of N in legume residues is likely to be important in sustaining those pre-existing soil sources of N.


2002 ◽  
Vol 34 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Andrew W Kramer ◽  
Timothy A Doane ◽  
William R Horwath ◽  
Chris van Kessel

2011 ◽  
Vol 62 (5) ◽  
pp. 396 ◽  
Author(s):  
A. L. Garside ◽  
M. J. Bell

Yield decline has been a major issue limiting productivity improvement in the Australian sugar industry since the early 1970s and is suspected to be largely due to growing sugarcane in a long-term monoculture. In order to address this issue, rotation experiments were established in several sugarcane-growing regions in Queensland, Australia, to ascertain whether breaking the sugarcane monoculture could, at least in part, assist in overcoming yield decline. The rotation experiments involved other crop species, pasture and bare fallow for different periods of time. When cane was replanted, the growth and yield following breaks was compared with that in a sugarcane monoculture system where the soil was unamended or fumigated before replanting. Yield increases were recorded in the plant and first ratoon (R1) crops in all experiments: in response to soil fumigation (average of 42 and 18%, respectively), and breaks (average of 27 and 30%, respectively). The data indicated that the response to breaks, while smaller in the plant crop, may have greater longevity than the response to fumigation. Further, there were indications that the response to breaks could continue into later ratoons (R2 and R3). Break type had little overall effect with the average response in the plant and R1 crops being 35% for breaks in excess of 30 months. Breaks of longer duration produced larger yield responses: 17% (<12 months), 24% (18–30 months) and 28% (>30 months) in the plant crop. However, the average yield increase over a plant and three ratoon crops when one cane crop was missed (6–12 months’ break) and a grain legume or maize break included was ~20%. Yield increases with breaks and fumigation were due to either increased stalk number, increased individual stalk weight or a combination of both. The component accounting for the majority of the variance changed between experiments, with a general trend for individual stalk weight to have more impact under better late season growing conditions and/or conditions that hampered early stalk development, while stalk number was more important under conditions of late season water stress and/or low radiation input. The results demonstrate that the long-term sugarcane monoculture is having an adverse effect on productivity. Further, breaking the sugarcane monoculture and sacrificing one sugarcane crop is likely to have minimal impact on the supply of cane to the mill. The increase in yield during other stages of the cane cycle is likely to compensate for the loss of 1 year of sugarcane, especially as the crop that is sacrificed is the last and almost always lowest-yielding ratoon.


2013 ◽  
Author(s):  
Francesca Menegazzo ◽  
Melissa Rosa Rizzotto ◽  
Martina Bua ◽  
Luisa Pinello ◽  
Elisabetta Tono ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document