AN EARLY CRETACEOUS SOURCE ROCK IN THE KENDREW TERRACE, DAMPIER SUB-BASIN?

1996 ◽  
Vol 36 (1) ◽  
pp. 477 ◽  
Author(s):  
S. Ryan-Grigor ◽  
C. M. Griffiths

The Early to Middle Cretaceous is characterised worldwide by widespread distribution of dark shales with high gamma ray readings and high organic contents defined as dark coloured mudrocks having the sedimentary, palaeoecological and geochemical characteristics associated with deposition under oxygen-deficient or oxygen-free bottom waters. Factors that contributed to the formation of the Early to Middle Cretaceous 'hot shales' are: rising sea-level, a warm equable climate which promoted water stratification, and large scale palaeogeographic features that restrict free water mixing. In the northern North Sea, the main source rock is the Late Jurassic to Early Cretaceous Kimmeridge Clay/Draupne Formation 'hot shale' which occurs within the Viking Graben, a large fault-bounded graben, in a marine environment with restricted bottom circulation and often anaerobic conditions. Opening of the basin during a major trans-gressive event resulted in flushing, and deposition of normal open marine shales above the 'hot shales'. The Late Callovian to Berriasian sediments in the Dampier Sub-basin are considered to have been deposited in restricted marine conditions below a stratified water column, in a deep narrow bay. Late Jurassic to Early Cretaceous marine sequences that have been cored on the North West Shelf are generally of moderate quality, compared to the high quality source rocks of the northern North Sea, but it should be noted that the cores are from wells on structural highs. The 'hot shales' are not very organic-rich in the northern Dampier Sub-basin and are not yet within the oil window, however seismic data show a possible reduction in velocity to the southwest in the Kendrew Terrace, suggesting that further south in the basin the shales may be within the oil window and may also be richer in organic content. In this case, they may be productive source rocks, analogous to the main source rock of the North Sea.

1982 ◽  
Vol 8 ◽  
pp. 73-86
Author(s):  
Holger Lindgreen ◽  
Erik Thomsen ◽  
Per Wrang

Little has been published on source rocks of Paleozoic and Mesozoic ages in the North Sea. Gas in many fields of the southern North Sea is known to originate from Late Carboniferous Coal Measures, (Eames 1975). In the East Midlands area of England, the oil in Carboniferous reservoirs is believed to originate from Carboniferous rocks (Bernard & Cooper 1981). Several papers published on the oil fields in the southern and northern North Sea suggest a Late Jurassic source rock (see review by Weismann 1979 and Bernard & Cooper 1981). Also Early and Middle Jurassic shales are suggested as possible source rocks in parts of the North Sea (Fuller 1975, Oudin 1976). Published data on source rock conditions in the Danish sector is limited to Weismann (1979).


Author(s):  
Maisie Bache-Jeffreys ◽  
Bárbara Lins Caldas de Moraes ◽  
Rachel E. Ball ◽  
Gui Menezes ◽  
Jónbjörn Pálsson ◽  
...  

AbstractBatoid fishes are among the most endangered marine vertebrates, yet conservation efforts have been confounded by incomplete taxonomy. Evidence suggest that the critically endangered ‘common skate’ actually represents two species: the flapper skate (Dipturus intermedius) and the blue skate (Dipturus batis). However, knowledge of the geographic range of these two nominal species is limited. Here, DNA sequencing is used to distinguish these species, allowing their spatial distributions to be clarified. These records were also used as the basis for species distribution modelling, providing the first broad scale models for each species across the Northeast Atlantic. Samples were obtained from Iceland, the UK (specifically Shetland), the North Sea and the Azores. Results suggest that D. batis was commonly distributed in the Western Approaches and Celtic Sea, extending out to Rockall and Iceland. D. intermedius generally appears to be less abundant, but was most frequent around northern Scotland and Ireland, including the northern North Sea, and was also present in Portugal. Two individuals were also identified from seamounts in remote areas of the Atlantic around the Azores, the furthest south and west the species has been found. This supports reports that the flapper skate historically had a much wider distribution (which was also highlighted in the distribution model), emphasising the large scale over which fisheries may have led to extirpations. Furthermore, these Azorean samples shared a unique control region haplotype, highlighting the importance of seamounts in preserving genetic diversity.


2000 ◽  
Vol 40 (1) ◽  
pp. 257 ◽  
Author(s):  
J.C. Preston ◽  
D.S. Edwards

Geochemical data from oils and source rock extracts have been used to delineate the active petroleum systems of the Northern Bonaparte Basin. The study area comprises the northeastern portion of the Territory of Ashmore and Cartier Islands, and the western part of the Zone of Co-operation Area A, and is specifically concerned with the wells located on and between the Laminaria and Flamingo highs. The oils and condensates from this region can be divided into two distinct chemical groups which correspond with the reservoir types, namely, a smaller group recovered from fracture porosity within the Early Cretaceous Darwin Formation, and a larger group reservoired in sandstones of the Middle-to-Late Jurassic Plover and Elang formations. The oils recovered from the Darwin Formation have a marine source affinity and correlate with sediment extracts from the underlying Early Cretaceous Echuca Shoals Formation. The Elang/ Plover-reservoired oils, which include all the commercial accumulations, were divided into two end-member families; the first includes the relatively land-plant- influenced oils from the northwestern part of the area (e.g. Laminaria, Corallina, Buffalo and Jahal fields), the second includes the relatively marine-influenced oils to the southeast (e.g. Bayu-Undan fields). Another oil family comprises the geographically and geochemically intermediate oils of the Elang and Kakatua fields and adjacent areas. While none of the oils can be uniquely correlated with a single source unit, they show geochemical similarities with Middle-to-Late Jurassic source rock extracts. Organic-rich rocks within the Plover and Elang formations are the major source of hydrocarbons for this area. The range in geochemistry of the Elang/Plover-reservoired oils may arise from facies variation within these sediments, but is more probably due to the localised additional input of hydrocarbons generated from thermally mature organic-rich claystone seals that overlie the Elang reservoir in catchment areas and traps; i.e. from the Frigate Formation for the northwestern oil family and from the Flamingo Group for the southeastern oil family. The short-range migration patterns dictated by the structural complexity of the basin are reflected in the closeness with which variations in the geochemical character of the accumulated liquids track variations in the character of source-seal lithologies. The length of migration pathways can, therefore, be inferred from the similarity or otherwise of source-seal characters with those of the hydrocarbon accumulations themselves. The resulting observations may challenge existing ideas concerning migration patterns, hydrocarbon prospectivity and prospect risking within the Northern Bonaparte Basin.


2007 ◽  
Vol 13 ◽  
pp. 13-16 ◽  
Author(s):  
Henrik I. Petersen ◽  
Hans P. Nytoft

The Central Graben in the North Sea is a mature petroleum province with Upper Jurassic – lowermost Cretaceous marine shale of the Kimmeridge Clay Formation and equivalents as the principal source rock, and Upper Cretaceous chalk as the main reservoirs. However, increasing oil prices and developments in drilling technologies have made deeper plays depending on older source rocks increasingly attractive. In recent years exploration activities have therefore also been directed towards deeper clastic plays where Palaeozoic deposits may act as petroleum source rocks. Carboniferous coaly sections are the most obvious source rock candidates. The gas fields of the major gas province in the southern North Sea and North-West Europe are sourced from the thick Upper Carboniferous Coal Measures, which contain hundreds of coal seams (Drozdzewski 1993; Lokhorst 1998; Gautier 2003). North of the gas province Upper Carboni-ferous coal-bearing strata occur onshore in northern England and in Scotland, but offshore in the North Sea area they have been removed by erosion. However, Lower Carboniferous strata are present offshore and have been drilled in the Witch Ground Graben and in the north-eastern part of the Forth Approaches Basin (Fig. 1A), where most of the Lower Carbon iferous sediments are assigned to the sandstone/shale-dominated Tayport For mation and to the coal-bearing Firth Coal Formation (Bruce & Stemmerik 2003). Highly oil-prone Lower Carboniferous lacustrine oil shales occur onshore in the Midland Valley, Scotland, but they have only been drilled by a single well off shore and seem not to be regionally distributed (Parnell 1988). In the southern part of the Norwegian and UK Central Graben and in the Danish Central Graben a total of only nine wells have encountered Lower Carboniferous strata, and while they may have a widespread occurrence (Fig. 1B; Bruce & Stemmerik 2003) their distribution is poorly constrained in this area. The nearly 6000 m deep Svane-1/1A well (Fig. 1B) in the Tail End Graben encountered gas and condensate at depths of 5400–5900 m, which based on carbon isotope values may have a Carboniferous source (Ohm et al. 2006). In the light of this the source rock potential of the Lower Carboniferous coals in the Gert-2 well (Fig. 1C) has recently been assessed (Petersen & Nytoft 2007).


1982 ◽  
Vol 8 ◽  
pp. 45-49
Author(s):  
Jens Morgen Hansen ◽  
Arne Buch

The Early Cretaceous sea primarily covered the same basinal regions as the Late Jurassic sea but, late in the Early Cretaceous the sea also covered Late Jurassic land masses. During Early Cretaceous time the topography of the North Sea region became gradually buried. The following major transgression comprises the transition Early/Late Cretaceous. At the Jurassic/ Cretaceous transition, the Late Cimmerian unconformity is a significant feature (fig. 24), known from large parts of the North Sea region. The subsequent transgression and sedimentation of marine clay (the Valhall Formation), and marine sand (the LC-1 Unit), started late in Late Jurassic. Therefore, the formations described in the present chapter also comprise sediments of Late Jurassic age. Thicknesses of the Lower Cretaceous sediments are given in fig. 15.


2021 ◽  
pp. M57-2018-19
Author(s):  
Alf Eivind Ryseth ◽  
Dominique Similox-Tohon ◽  
Olaf Thieβen

AbstractThe Tromsø - Bjørnøya composite tectono-sedimentary element in the southwestern Barents Sea comprises strata of Late Paleozoic - Paleocene age. Since the Paleozoic Caledonian orogeny, the structural evolution of the CTSE is mainly related to extension, culminating in Late Jurassic - Early Cretaceous hyperextension. Some compressive deformation observed during Late Cretaceous - Paleogene times may relate to activity in the North Atlantic prior to the Early Eocene onset of sea floor spreading between Norway and Greenland.The sedimentary succession may be up to 14 km thick. It comprises Late Paleozoic continental facies, followed by carbonates, evaporites and eventually cherts and marine clastic material. The overlying Triassic - Paleocene succession is entirely siliciclastic, reflecting Triassic - Middle Jurassic deltaic and shallow marine conditions followed by deeper marine conditions during Late Jurassic - Paleocene times.Primary reservoirs are encountered in the latest Triassic - Middle Jurassic succession, with secondary reservoirs found in Late Jurassic - Early Cretaceous syn-rift succession, and in Paleocene strata. The primary source rock for petroleum is of Late Jurassic - Early Cretaceous age. Other source rocks include strata of Triassic and Barremian age, and a recently observed unit of Cenomanian - Early Turonian age.


2016 ◽  
Author(s):  
Daniel Trümpy ◽  
Jan Witte ◽  
Immanuel Weber ◽  
João P. Da Ponte Souza

ABSTRACT In total, some 60 wells have been drilled onshore and less than 10 offshore Somalia*, none of which in deep water. Several prospective basins remain undrilled, such as the offshore Jubba and Mid Somali High basins and the onshore Odewayne basin. In view of the gas discoveries offshore Mozambique and Tanzania, and also of encouraging results offshore Kenya (sub-commercial oil discovery Sunbird-1) and in Madagascar, the Somalian offshore and onshore basins were re-evaluated. As to the Somali onshore basins, the extension of the Yemeni Jurassic and Cretaceous rifts into Somalia highlights their prospectivity. Seeps abound (Odewayne and Nogal basins) and some wells encountered good shows. Late Jurassic and Upper Cretaceous marine shales are source rock candidates. Gas in the area of Mogadishu may be associated with the Early Triassic Bokh Fm. source rock. Seeps in western Somalia are rare, and may result either from long-distance migration out of the Calub Graben or from locally mature Lower Cretaceous or Upper Jurassic. We establish an inventory of proven and possible source rock occurences in Somalia by integrating publicly available data on slicks and seeps, geological and gravity maps, literature data, well data and geological information from adjoining basins. Our data indicate that in the Somali part of the Gulf of Aden, high heat-flow may critically affect the Late Jurassic source rock. However, Late Cretaceous or even Eocene sources may be locally oil-mature. The presence of source rocks on the Somali Indian Ocean margin remains presently speculative. Abundance of slicks in the area south of Mogadishu may not relate to hydrocarbons. Of more interest are reported isolated slicks further to the north, in deeper waters of the Mogadishu and Mid-Somalia High Basins. These slicks may be related to Lower/Mid-Jurassic, Late Jurassic, Late Cretaceous or Eocene sources. Analysis of onshore seeps in northern Somalia (Nogal, Daroor, Odewayne basins), integrated with seismic data, will allow to determine the origin of these oils and an assessment of the size of prospective kitchen areas. In the offshore, 3D-Basin-modelling will be required to determine which areas are prospective for gas or, especially, for oil.


2003 ◽  
Vol 1 ◽  
pp. 231-246 ◽  
Author(s):  
Peter Japsen ◽  
Peter Britze ◽  
Claus Andersen

The Danish Central Graben is part of the mainly Late Jurassic complex of grabens in the central and southern North Sea which form the Central Graben. The tectonic elements of the Danish Central Graben in the Late Jurassic are outlined and compared to those in the Early Cretaceous based on reduced versions of published maps (1:200 000), compiled on the basis of all 1994 public domain seismic and well data. The Tail End Graben, a half-graben which stretches for about 90 km along the East North Sea High, is the dominant Late Jurassic structural feature. The Rosa Basin (new name) is a narrow, north–south-trending basin extending from the south-western part of the Tail End Graben. The Tail End Graben ceased to exist as a coherent structural element during the Early Cretaceous and developed into three separate depocentres: the Iris and Gulnare Basins to the north and the Roar Basin to the south (new names). The Early Cretaceous saw a shift from subsidence focused along the East North Sea High during the Late Jurassic to a more even distribution of minor basins within the Danish Central Graben. The depth to the top of the Upper Jurassic – lowermost Cretaceous Farsund Formation reaches a maximum of 4800 m in the northern part of the study area, while the depth to the base of the Upper Jurassic reaches 7500 m in the Tail End Graben, where the Upper Jurassic attains a maximum thickness of 3600 m. The Lower Cretaceous Cromer Knoll Group attains a maximum thickness of 1100 m in the Outer Rough Basin.


Sign in / Sign up

Export Citation Format

Share Document