Source Rocks of Somalia – A Regional Assessment

2016 ◽  
Author(s):  
Daniel Trümpy ◽  
Jan Witte ◽  
Immanuel Weber ◽  
João P. Da Ponte Souza

ABSTRACT In total, some 60 wells have been drilled onshore and less than 10 offshore Somalia*, none of which in deep water. Several prospective basins remain undrilled, such as the offshore Jubba and Mid Somali High basins and the onshore Odewayne basin. In view of the gas discoveries offshore Mozambique and Tanzania, and also of encouraging results offshore Kenya (sub-commercial oil discovery Sunbird-1) and in Madagascar, the Somalian offshore and onshore basins were re-evaluated. As to the Somali onshore basins, the extension of the Yemeni Jurassic and Cretaceous rifts into Somalia highlights their prospectivity. Seeps abound (Odewayne and Nogal basins) and some wells encountered good shows. Late Jurassic and Upper Cretaceous marine shales are source rock candidates. Gas in the area of Mogadishu may be associated with the Early Triassic Bokh Fm. source rock. Seeps in western Somalia are rare, and may result either from long-distance migration out of the Calub Graben or from locally mature Lower Cretaceous or Upper Jurassic. We establish an inventory of proven and possible source rock occurences in Somalia by integrating publicly available data on slicks and seeps, geological and gravity maps, literature data, well data and geological information from adjoining basins. Our data indicate that in the Somali part of the Gulf of Aden, high heat-flow may critically affect the Late Jurassic source rock. However, Late Cretaceous or even Eocene sources may be locally oil-mature. The presence of source rocks on the Somali Indian Ocean margin remains presently speculative. Abundance of slicks in the area south of Mogadishu may not relate to hydrocarbons. Of more interest are reported isolated slicks further to the north, in deeper waters of the Mogadishu and Mid-Somalia High Basins. These slicks may be related to Lower/Mid-Jurassic, Late Jurassic, Late Cretaceous or Eocene sources. Analysis of onshore seeps in northern Somalia (Nogal, Daroor, Odewayne basins), integrated with seismic data, will allow to determine the origin of these oils and an assessment of the size of prospective kitchen areas. In the offshore, 3D-Basin-modelling will be required to determine which areas are prospective for gas or, especially, for oil.

1996 ◽  
Vol 36 (1) ◽  
pp. 477 ◽  
Author(s):  
S. Ryan-Grigor ◽  
C. M. Griffiths

The Early to Middle Cretaceous is characterised worldwide by widespread distribution of dark shales with high gamma ray readings and high organic contents defined as dark coloured mudrocks having the sedimentary, palaeoecological and geochemical characteristics associated with deposition under oxygen-deficient or oxygen-free bottom waters. Factors that contributed to the formation of the Early to Middle Cretaceous 'hot shales' are: rising sea-level, a warm equable climate which promoted water stratification, and large scale palaeogeographic features that restrict free water mixing. In the northern North Sea, the main source rock is the Late Jurassic to Early Cretaceous Kimmeridge Clay/Draupne Formation 'hot shale' which occurs within the Viking Graben, a large fault-bounded graben, in a marine environment with restricted bottom circulation and often anaerobic conditions. Opening of the basin during a major trans-gressive event resulted in flushing, and deposition of normal open marine shales above the 'hot shales'. The Late Callovian to Berriasian sediments in the Dampier Sub-basin are considered to have been deposited in restricted marine conditions below a stratified water column, in a deep narrow bay. Late Jurassic to Early Cretaceous marine sequences that have been cored on the North West Shelf are generally of moderate quality, compared to the high quality source rocks of the northern North Sea, but it should be noted that the cores are from wells on structural highs. The 'hot shales' are not very organic-rich in the northern Dampier Sub-basin and are not yet within the oil window, however seismic data show a possible reduction in velocity to the southwest in the Kendrew Terrace, suggesting that further south in the basin the shales may be within the oil window and may also be richer in organic content. In this case, they may be productive source rocks, analogous to the main source rock of the North Sea.


2007 ◽  
Vol 13 ◽  
pp. 13-16 ◽  
Author(s):  
Henrik I. Petersen ◽  
Hans P. Nytoft

The Central Graben in the North Sea is a mature petroleum province with Upper Jurassic – lowermost Cretaceous marine shale of the Kimmeridge Clay Formation and equivalents as the principal source rock, and Upper Cretaceous chalk as the main reservoirs. However, increasing oil prices and developments in drilling technologies have made deeper plays depending on older source rocks increasingly attractive. In recent years exploration activities have therefore also been directed towards deeper clastic plays where Palaeozoic deposits may act as petroleum source rocks. Carboniferous coaly sections are the most obvious source rock candidates. The gas fields of the major gas province in the southern North Sea and North-West Europe are sourced from the thick Upper Carboniferous Coal Measures, which contain hundreds of coal seams (Drozdzewski 1993; Lokhorst 1998; Gautier 2003). North of the gas province Upper Carboni-ferous coal-bearing strata occur onshore in northern England and in Scotland, but offshore in the North Sea area they have been removed by erosion. However, Lower Carboniferous strata are present offshore and have been drilled in the Witch Ground Graben and in the north-eastern part of the Forth Approaches Basin (Fig. 1A), where most of the Lower Carbon iferous sediments are assigned to the sandstone/shale-dominated Tayport For mation and to the coal-bearing Firth Coal Formation (Bruce & Stemmerik 2003). Highly oil-prone Lower Carboniferous lacustrine oil shales occur onshore in the Midland Valley, Scotland, but they have only been drilled by a single well off shore and seem not to be regionally distributed (Parnell 1988). In the southern part of the Norwegian and UK Central Graben and in the Danish Central Graben a total of only nine wells have encountered Lower Carboniferous strata, and while they may have a widespread occurrence (Fig. 1B; Bruce & Stemmerik 2003) their distribution is poorly constrained in this area. The nearly 6000 m deep Svane-1/1A well (Fig. 1B) in the Tail End Graben encountered gas and condensate at depths of 5400–5900 m, which based on carbon isotope values may have a Carboniferous source (Ohm et al. 2006). In the light of this the source rock potential of the Lower Carboniferous coals in the Gert-2 well (Fig. 1C) has recently been assessed (Petersen & Nytoft 2007).


1983 ◽  
Vol 31 ◽  
pp. 159-169
Author(s):  
Jens Morten Hansen ◽  
Naja Mikkelsen

The lithostratigraphy of the Danish Central Graben sequence is briefly outlined and the lithostratigraphic subdivision tabulated for 23 released wells. A simple subsidence model for the periode from Triassic to Recent is established exclusively with reference to the presented well data. The model points to pro-nounced changes in the rate of subsidence through Mesozoic and Cenozoic times with major changes taking place during late Jurassic and late Neogene. Based on the subsidence model it is suggested, that possible sourcerocks of Carboniferous or older ages were mature by late Cretaceous time. The presum­ably most promising sourcerock of the Central Graben, the upper Jurassic J-4 unit, reached the hydro­carbon generating level during early Tertiary in the deeper parts of the Graben whereas extensive hydro­carbon generation in the shallower parts did not reach a maximum before Neogene according to the present model.


2018 ◽  
Vol 156 (07) ◽  
pp. 1265-1284
Author(s):  
EVA VAN DER VOET ◽  
LEONORA HEIJNEN ◽  
JOHN J. G. REIJMER

AbstractIn contrast to the Norwegian and Danish sectors, where significant hydrocarbon reserves were found in chalk reservoirs, limited studies exist analysing the chalk evolution in the Dutch part of the North Sea. To provide a better understanding of this evolution, a tectono-sedimentary study of the Late Cretaceous to Early Palaeogene Chalk Group in the northern Dutch North Sea was performed, facilitated by a relatively new 3D seismic survey. Integrating seismic and biostratigraphic well data, seven chronostratigraphic units were mapped, allowing a reconstruction of intra-chalk geological events.The southwestward thickening of the Turonian sequence is interpreted to result from tilting, and the absence of Coniacian and Santonian sediments in the western part of the study area is probably the result of non-deposition. Seismic truncations show evidence of a widespread inversion phase, the timing of which differs between the structural elements. It started at the end of the Campanian followed by a second pulse during the Maastrichtian, a new finding not reported before. After subsidence during the Maastrichtian and Danian, renewed inversion and erosion occurred at the end of the Danian. Halokinesis processes resulted in thickness variations of chalk units of different ages.In summary, variations in sedimentation patterns in the northern Dutch North Sea relate to the Sub-Hercynian inversion phase during the Campanian and Maastrichtian, the Laramide inversion phase at the end of the Danian, and halokinesis processes. Additionally, the Late Cretaceous sea floor was characterized by erosion through contour bottom currents at different scales and resedimentation by slope failures.


GeoArabia ◽  
2009 ◽  
Vol 14 (4) ◽  
pp. 91-108 ◽  
Author(s):  
Thamer K. Al-Ameri ◽  
Amer Jassim Al-Khafaji ◽  
John Zumberge

ABSTRACT Five oil samples reservoired in the Cretaceous Mishrif Formation from the Ratawi, Zubair, Rumaila North and Rumaila South fields have been analysed using Gas Chromatography – Mass Spectroscopy (GC-MS). In addition, fifteen core samples from the Mishrif Formation and 81 core samples from the Lower Cretaceous and Upper Jurassic have been subjected to source rock analysis and palynological and petrographic description. These observations have been integrated with electric wireline log response. The reservoirs of the Mishrif Formation show measured porosities up to 28% and the oils are interpreted as being sourced from: (1) Type II carbonate rocks interbedded with shales and deposited in a reducing marine environment with low salinity based on biomarkers and isotopic analysis; (2) Upper Jurassic to Lower Cretaceous age based on sterane ratios, analysis of isoprenoids and isotopes, and biomarkers, and (3) Thermally mature source rocks, based on the biomarker analysis. The geochemical analysis suggests that the Mishrif oils may have been sourced from the Upper Jurassic Najma or Sargelu formations or the Lower Cretaceous Sulaiy Formation. Visual kerogen assessment and source rock analysis show the Sulaiy Formation to be a good quality source rock with high total organic carbon (up to 8 wt% TOC) and rich in amorphogen. The Lower Cretaceous source rocks were deposited in a suboxic-anoxic basin and show good hydrogen indices. They are buried at depths in excess of 5,000 m and are likely to have charged Mishrif reservoirs during the Miocene. The migration from the source rock is likely to be largely vertical and possibly along faults before reaching the vuggy, highly permeable reservoirs of the Mishrif Formation. Structural traps in the Mishrif Formation reservoir are likely to have formed in the Late Cretaceous.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9510
Author(s):  
Julia B. McHugh ◽  
Stephanie K. Drumheller ◽  
Anja Riedel ◽  
Miriam Kane

A survey of 2,368 vertebrate fossils from the Upper Jurassic Mygatt-Moore Quarry (MMQ) (Morrison Formation, Brushy Basin Member) in western Colorado revealed 2,161 bone surface modifications on 884 specimens. This is the largest, site-wide bone surface modification survey of any Jurassic locality. Traces made by invertebrate actors were common in the assemblage, second in observed frequency after vertebrate bite marks. Invertebrate traces are found on 16.174% of the total surveyed material and comprise 20.148% of all identified traces. Six distinct invertebrate trace types were identified, including pits and furrows, rosettes, two types of bioglyph scrapes, bore holes and chambers. A minimum of four trace makers are indicated by the types, sizes and morphologies of the traces. Potential trace makers are inferred to be dermestid or clerid beetles, gastropods, an unknown necrophagous insect, and an unknown osteophagus insect. Of these, only gastropods are preserved at the site as body fossils. The remaining potential trace makers are part of the hidden paleodiversity from the North American Late Jurassic Period, revealed only through this ichnologic and taphonomic analysis. Site taphonomy suggests variable, but generally slow burial rates that range from months up to 6 years, while invertebrate traces on exposed elements indicate a minimum residence time of five months for carcasses with even few preserved invertebrate traces. These traces provide insight into the paleoecology, paleoclimate, and site formation of the MMQ, especially with regards to residence times of the skeletal remains on the paleolandscape. Comprehensive taphonomic studies, like this survey, are useful in exploring patterns of paleoecology and site formation, but they are also rare in Mesozoic assemblages. Additional work is required to determine if 16.174% is typical of bulk-collected fossils from Jurassic ecosystems in North America, or if the MMQ represents an unusual locality.


1992 ◽  
Vol 32 (1) ◽  
pp. 289 ◽  
Author(s):  
John Scott

The main potential source rock intervals are generally well defined on the North West Shelf by screening analysis such as Rock-Eval. The type of product from the source rocks is not well defined, owing to inadequacies in current screening analysis techniques. The implications of poor definition of source type in acreage assessment are obvious. The type of product is dependent on the level of organic maturity of the source rock, the ability of products to migrate out of the source rock and on the type of organic material present. The type of kerogen present is frequently determined by Rock-Eval pyrolysis. However, Rock-Eval has severe limitations in defining product type when there is a significant input of terrestrial organic material. This problem has been recognised in Australian terrestrial/continental sequences but also occurs where marine source rock facies contain terrestrially-derived higher plant material. Pyrolysis-gas chromatography as applied to source rock analysis provides, by molecular typing, a better method of estimating the type of products of the kerogen breakdown than bulk chemical analysis such as Rock-Eval pyrolysis.


1974 ◽  
Vol 14 (1) ◽  
pp. 77 ◽  
Author(s):  
Robert A. Laws ◽  
Gregory P. Kraus

The present structural configuration of the Bonaparte Gulf-Timor Sea area is essentially the result of Mesozoic and Tertiary fragmentation of a once relatively simple Permo-Triassic Basin. A northwest-southeast Palaeozoic structural grain in the southeastern portion of the area resulted from early Palaeozoic faulting, possibly tied to aborted rift development. This faulting effectively controlled sedimentation throughout the Phanerozoic. Pronounced northeast-southwest Jurassic to Tertiary structural trends dominate the central and northern area, paralleling the present edge of the continental shelf and swinging south southwest into the northern extension of the Browse Basin. Post-Palaeozoic epeirogenies which had the greatest effect on the regional structural pattern occurred in the mid-Jurassic, Early Cretaceous, within the Eocene and in the Plio-Pleistocene.The Kimberley and Sturt Blocks flanking the basin to the south and east constituted the most important source areas for clastic sedimentation throughout the Phanerozoic. Periodic contributions during the Mesozoic were derived from a postulated source to the northwest in the vicinity of the present-day Timor Trough.The maximum thickness of Phanerozoic sediments present within the Bonaparte Gulf-Timor Sea area exceeds 50,000 ft (15,000 m). Early Palaeozoic to Carboniferous evaporites, carbonates and clastics are unconformably overlain by a thick sequence of Permian deltaic sediments in the southeastern Bonaparte Gulf Basin. This is succeeded by a Triassic to Middle Jurassic transgressive-regressive clastic sequence, grading northwestward to marginal marine and marine clastics and carbonates. The Permian to mid-Jurassic sediments are unconformably overlain by Upper Jurassic sands and shales, mainly fluvial in the southeast and north, becoming more marine westward. These clastics are everywhere succeeded by a monotonous sequence of Cretaceous shales and shaly limestones followed by a generally north to northwesterly thickening wedge of Tertiary carbonates and minor elastics.Hydrocarbon shows have been noted offshore in rocks of Carboniferous, Permian, Late Jurassic, Late Cretaceous and Eocene age. Porous clastics in conjunction with thick and laterally-extensive, organically-rich shales are present within the Palaeozoic and Mesozoic sequences. These sediments, in association with fault- and diapir-related anomalies and stratigraphic plays, combine to make certain provinces of the Bonaparte Gulf-Timor Sea area prospective in the search for viable oil and gas reserves.


Sign in / Sign up

Export Citation Format

Share Document