Tromsø - Bjørnøya Composite Tectono-Sedimentary Element

2021 ◽  
pp. M57-2018-19
Author(s):  
Alf Eivind Ryseth ◽  
Dominique Similox-Tohon ◽  
Olaf Thieβen

AbstractThe Tromsø - Bjørnøya composite tectono-sedimentary element in the southwestern Barents Sea comprises strata of Late Paleozoic - Paleocene age. Since the Paleozoic Caledonian orogeny, the structural evolution of the CTSE is mainly related to extension, culminating in Late Jurassic - Early Cretaceous hyperextension. Some compressive deformation observed during Late Cretaceous - Paleogene times may relate to activity in the North Atlantic prior to the Early Eocene onset of sea floor spreading between Norway and Greenland.The sedimentary succession may be up to 14 km thick. It comprises Late Paleozoic continental facies, followed by carbonates, evaporites and eventually cherts and marine clastic material. The overlying Triassic - Paleocene succession is entirely siliciclastic, reflecting Triassic - Middle Jurassic deltaic and shallow marine conditions followed by deeper marine conditions during Late Jurassic - Paleocene times.Primary reservoirs are encountered in the latest Triassic - Middle Jurassic succession, with secondary reservoirs found in Late Jurassic - Early Cretaceous syn-rift succession, and in Paleocene strata. The primary source rock for petroleum is of Late Jurassic - Early Cretaceous age. Other source rocks include strata of Triassic and Barremian age, and a recently observed unit of Cenomanian - Early Turonian age.

2017 ◽  
Vol 188 (1-2) ◽  
pp. 9 ◽  
Author(s):  
Marc Jolivet ◽  
Anastasia Arzhannikova ◽  
Andrei Frolov ◽  
Sergei Arzhannikov ◽  
Natalia Kulagina ◽  
...  

The Late Jurassic - Early Cretaceous tectonic evolution of SE Siberia was marked by the closure of the Mongol-Okhotsk ocean. While this geodynamic event led to compressive deformation and denudation in a wide area encompassing the North-Altay, Sayan and Baikal Patom ranges, it was contemporaneous to widespread extension from the Transbaikal region situated immediately north of the suture zone to the Pacific plate, affecting eastern Mongolia and northeastern China. In this study we review the paleontological and sedimentological data available in the Russian literature and provide new macro-floral and palynological data from the Mesozoic sediments of three Transbaikal basins. These data are used to describe the paleoenvironmental and paleoclimatic evolution of the Transbaikal area in order to assess the topographic evolution of the region in relation with the closure of the Mongol-Okhotsk ocean. We establish that the Transbaikal basins evolved in a continuously extensional tectonic setting from at least the Early-Middle Jurassic to the Early Cretaceous. The associated sedimentary environments are characterized by retrogradation from alluvial fan–braided river dominated systems prevailing during the Early to Middle Jurassic initial opening of the basins to meandering river– lacustrine systems that developed during the Late Jurassic - Early Cretaceous interval. No evidence of high relief topography was found and we conclude that, while compression and denudation occurred in the North Altai, Sayan and Patom ranges, in the Transbaikal region, the docking of the Mongolia-North China continent to Siberia was a “soft collision” event, possibly involving a major strike-slip displacement that did not lead to an orogenic event implying strong compressive deformation, crustal thickening and topography building.


1996 ◽  
Vol 36 (1) ◽  
pp. 477 ◽  
Author(s):  
S. Ryan-Grigor ◽  
C. M. Griffiths

The Early to Middle Cretaceous is characterised worldwide by widespread distribution of dark shales with high gamma ray readings and high organic contents defined as dark coloured mudrocks having the sedimentary, palaeoecological and geochemical characteristics associated with deposition under oxygen-deficient or oxygen-free bottom waters. Factors that contributed to the formation of the Early to Middle Cretaceous 'hot shales' are: rising sea-level, a warm equable climate which promoted water stratification, and large scale palaeogeographic features that restrict free water mixing. In the northern North Sea, the main source rock is the Late Jurassic to Early Cretaceous Kimmeridge Clay/Draupne Formation 'hot shale' which occurs within the Viking Graben, a large fault-bounded graben, in a marine environment with restricted bottom circulation and often anaerobic conditions. Opening of the basin during a major trans-gressive event resulted in flushing, and deposition of normal open marine shales above the 'hot shales'. The Late Callovian to Berriasian sediments in the Dampier Sub-basin are considered to have been deposited in restricted marine conditions below a stratified water column, in a deep narrow bay. Late Jurassic to Early Cretaceous marine sequences that have been cored on the North West Shelf are generally of moderate quality, compared to the high quality source rocks of the northern North Sea, but it should be noted that the cores are from wells on structural highs. The 'hot shales' are not very organic-rich in the northern Dampier Sub-basin and are not yet within the oil window, however seismic data show a possible reduction in velocity to the southwest in the Kendrew Terrace, suggesting that further south in the basin the shales may be within the oil window and may also be richer in organic content. In this case, they may be productive source rocks, analogous to the main source rock of the North Sea.


2003 ◽  
Vol 1 ◽  
pp. 437-458 ◽  
Author(s):  
Tommy Egebjerg Mogensen ◽  
John A. Korstgård

In the Kattegat area, Denmark, the Sorgenfrei–Tornquist Zone, an old crustal weakness zone, was repeatedly reactivated during Triassic, Jurassic and Early Cretaceous times with dextral transtensional movements along the major boundary faults. These tectonic events were minor compared to the tectonic events of the Late Carboniferous – Early Permian and the Late Cretaceous – Early Tertiary, although a dynamic structural and stratigraphic analysis indicates that the Sorgenfrei–Tornquist Zone was active compared to the surrounding areas. At the end of the Palaeozoic, the area was a peneplain. Regional Triassic subsidence caused onlap towards the north-east, where the youngest Triassic sediments overlie Precambrian crystalline basement. During the Early Triassic, several of the major Early Permian faults were reactivated, probably with dextral strike-slip along the Børglum Fault. Jurassic – Early Cretaceous subsidence was restricted primarily to the area between the two main faults in the Sorgenfrei–Tornquist Zone, the Grenå–Helsingborg Fault and the Børglum Fault. This restriction of basin development indicates a change in the regional stress field at the Triassic–Jurassic transition. Middle Jurassic and Late Jurassic – Early Cretaceous subsidence followed the Early Jurassic pattern with local subsidence in the Sorgenfrei–Tornquist Zone, but now even more restricted to within the zone. The subsidence showed a decrease in the Middle Jurassic, and increased again during Late Jurassic – Early Cretaceous times. Small faults were generated internally in the Sorgenfrei–Tornquist Zone during the Mesozoic with a pattern that indicates a broad transfer of strike-slip/oblique-slip motion from the Grenå–Helsingborg Fault to the Børglum Fault.


2013 ◽  
Vol 50 (3) ◽  
pp. 315-323 ◽  
Author(s):  
Richard L. Cifelli ◽  
Cynthia L. Gordon ◽  
Thomas R. Lipka

Multituberculates, though among the most commonly encountered mammalian fossils of the Mesozoic, are poorly known from the North American Early Cretaceous, with only one taxon named to date. Herein we describe Argillomys marylandensis, gen. et sp. nov., from the Early Cretaceous of Maryland, based on an isolated M2. Argillomys represents the second mammal known from the Arundel Clay facies of the Patuxent Formation (Lower Cretaceous: Aptian). Though distinctive in its combination of characters (e.g., enamel ornamentation consisting of ribs and grooves only, cusp formula 2:4, presence of distinct cusp on anterobuccal ridge, enlargement of second cusp on buccal row, central position of ultimate cusp in lingual row, great relative length), the broader affinities of Argillomys cannot be established because of non-representation of the antemolar dentition. Based on lack of apomorphies commonly seen among Cimolodonta (e.g., three or more cusps present in buccal row, fusion of cusps in lingual row, cusps strongly pyramidal and separated by narrow grooves), we provisionally regard Argillomys as a multituberculate of “plagiaulacidan” grade. Intriguingly, it is comparable in certain respects to some unnamed Paulchoffatiidae, a family otherwise known from the Late Jurassic – Early Cretaceous of the Iberian Peninsula.


2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Xin Wang

Angiosperms are the single most important plant group in the current ecosystem. However, little is known about the origin and early evolution of angiosperms. Jurassic and earlier traces of angiosperms have been claimed multiple times from Europe and Asia, but reluctance to accept these records remains. To test the truthfulness of these claims, palaeobotanical records from continents other than Europe and Asia constitute a crucial test. Here I document a new angiosperm fruit, Dilcherifructus mexicana gen. et sp. nov, from the Middle Jurassic of Mexico. Its Jurassic age suggests that origin of angiosperms is much earlier than widely accepted, while its occurrence in the North America indicates that angiosperms were already widespread in the Jurassic, although they were still far away from their ecological radiation, which started in the Early Cretaceous.


Lithos ◽  
2019 ◽  
Vol 336-337 ◽  
pp. 242-257 ◽  
Author(s):  
Yuan-Shuo Zhang ◽  
Wolfgang Siebel ◽  
Song He ◽  
Yan Wang ◽  
Fukun Chen

2020 ◽  
Author(s):  
Kseniya Mikhailova ◽  
Victoria Ershova ◽  
Mikhail Rogov ◽  
Boris Pokrovsky ◽  
Oleg Vereshchagin

<p>Glendonites often used as paleoclimate indicator of cold near-bottom temperature, as these are calcite pseudomorphs of ikaite, a metastable calcium carbonate hexahydrate, precipitates mostly under low temperature (mainly from 0-4<sup>o</sup>C) and may be stabilized by high phosphate concentrations that occurs due to anaerobic oxidation of methane and/or organic matter; dissolved organic carbon, sulfates and amino acid may contribute ikaite formation as well.  Therefore, glendonites-bearing host rocks frequently include glacial deposits that make them useful as a paleoclimate indicator of near-freezing temperature.</p><p>Our study is based on material collected from five wells drilled in eastern Barents Sea: Severo-Murmanskaya, Ledovaya – 1,2; Ludlovskaya – 1,2. The studied glendonites, mainly represented by relatively small rhombohedral pseudomorphs (0,5-2 cm) and rarely by stellate aggregates, collected from Middle Jurassic to Lower Cretaceous shallow marine clastic deposits. They scattered distributed throughout succession. Totally 18 samples of glendonites were studied. The age of host-bearing rocks were defined by fossils: bivalves or ammonites, microfossils or dinoflagellate. Bajocian-Bathonian glendonites were collected from Ledovaya – 1 and Ludlovskaya – 1 and 2 wells; in addition to these occurrences Middle Jurassic glendonites are known also in boreholes drilled at Shtockmanovskoe field. Numerous ‘jarrowite-like’ glendonites of the Middle Volgian (~ latest early Tithonian) age were sampled from Severo-Murmanskaya well. Unique Late Barremian glendonites were found in Ledovaya – 2 well.</p><p>δ<sup>18</sup>O values of Middle Jurassic glendonite concretions range from – 5.4 to –1.7 ‰ Vienna Pee Dee Belemnite (VPDB); for Upper Jurassic – Lower Cretaceous δ<sup>18</sup>O values range from – 4.3 to –1.6 ‰ VPDB; for Lower Cretaceous - δ<sup>18</sup>O values range from – 4.5 to –3.4 ‰ VPDB. Carbon isotope composition for Middle Jurassic glendonite concretions δ<sup>13</sup>C values range from – 33.3 to –22.6 ‰ VPDB; for Upper Jurassic – Lower Cretaceous δ<sup>13</sup>C values range from – 25.1 to –18.4 ‰ VPDB; for Lower Cretaceous - δ<sup>13</sup>C values range from – 30.1 to –25.6 ‰ VPDB.</p><p>Based on δ<sup>18</sup>O data we supposed that seawater had a strong influence on ikaite-derived calcite precipitation. Received data coincide with δ<sup>18</sup>O values reported from other Mesozoic glendonites and Quaternary glendonites formed in cold environments. Values of δ<sup>13</sup>C of glendonites are close to bacterial sulfate reduction and/or anaerobic oxidation of methane or organic matter. Glendonites consist of carbonates forming a number of phases which different in phosphorus and magnesium content. Mg-bearing calcium carbonate and dolomite both include framboidal pyrite, which can indicate (1) lack of strong rock transformations activity and (2) presence of sulfate-reduction bacteria in sediments.</p><p>To conclude, Mesozoic climate was generally warm and studied concretions indicate cold climate excursion in Middle Jurassic, Upper Jurassic-Early Cretaceous and Early Cretaceous.</p><p> </p><p>The study was supported by RFBR, project number 20-35-70012.</p>


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6348
Author(s):  
Philip D. Mannion

The Jurassic/Cretaceous (J/K) boundary, 145 million years ago, has long been recognised as an extinction event or faunal turnover for sauropod dinosaurs, with many ‘basal’ lineages disappearing. However, recently, a number of ‘extinct’ groups have been recognised in the Early Cretaceous, including diplodocids in Gondwana, and non-titanosauriform macronarians in Laurasia. Turiasauria, a clade of non-neosauropod eusauropods, was originally thought to have been restricted to the Late Jurassic of western Europe. However, its distribution has recently been extended to the Late Jurassic of Tanzania (Tendaguria tanzaniensis), as well as to the Early Cretaceous of the USA (Mierasaurus bobyoungi and Moabosaurus utahensis), demonstrating the survival of another ‘basal’ clade across the J/K boundary. Teeth from the Middle Jurassic–Early Cretaceous of western Europe and North Africa have also tentatively been attributed to turiasaurs, whilst recent phylogenetic analyses recovered Late Jurassic taxa from Argentina and China as further members of Turiasauria. Here, an anterior dorsal centrum and neural arch (both NHMUK 1871) from the Early Cretaceous Wealden Supergroup of the UK are described for the first time. NHMUK 1871 shares several synapomorphies with Turiasauria, especially the turiasaurs Moabosaurus and Tendaguria, including: (1) a strongly dorsoventrally compressed centrum; (2) the retention of prominent epipophyses; and (3) an extremely low, non-bifid neural spine. NHMUK 1871 therefore represents the first postcranial evidence for Turiasauria from European deposits of Early Cretaceous age. Although turiasaurs show clear heterodont dentition, only broad, characteristically ‘heart’-shaped teeth can currently be attributed to Turiasauria with confidence. As such, several putative turiasaur occurrences based on isolated teeth from Europe, as well as the Middle Jurassic and Early Cretaceous of Africa, cannot be confidently referred to Turiasauria. Unequivocal evidence for turiasaurs is therefore restricted to the late Middle Jurassic–Early Cretaceous of western Europe, the Late Jurassic of Tanzania, and the late Early Cretaceous of the USA, although remains from elsewhere might ultimately demonstrate that the group had a near-global distribution.


2021 ◽  
Vol 62 (9) ◽  
pp. 1006-1020
Author(s):  
F.I. Zhimulev ◽  
E.V. Vetrov ◽  
I.S. Novikov ◽  
G. Van Ranst ◽  
S. Nachtergaele ◽  
...  

Abstract —The Kolyvan’–Tomsk folded zone (KTFZ) is a late Permian collisional orogen in the northwestern section of the Central Asian Orogenic Belt. The Mesozoic history of the KTFZ area includes Late Triassic–Early Jurassic and Late Jurassic–Early Cretaceous orogenic events. The earlier event produced narrow deep half-ramp basins filled with Early–Middle Jurassic molasse south of the KTFZ, and the later activity rejuvenated the Tomsk thrust fault, whereby the KTFZ Paleozoic rocks were thrust over the Early–Middle Jurassic basin sediments. The Mesozoic orogenic events induced erosion and the ensuing exposure of granitoids (Barlak complex) that were emplaced in a within-plate context after the Permian collisional orogeny. Both events were most likely associated with ocean closure, i.e., the Paleothetys Ocean in the Late Triassic–Early Jurassic and the Mongol–Okhotsk Ocean in the Late Jurassic–Early Cretaceous. The apatite fission track (AFT) ages of granitoids from the Ob’ complex in the KTFZ range between ~120 and 100 Ma (the Aptian and the Albian). The rocks with Early Cretaceous AFT ages were exhumed as a result of denudation and peneplanation of the Early Cretaceous orogeny, which produced a vast Late Cretaceous–Paleogene planation surface. The tectonic pattern of the two orogenic events, although being different in details, generally inherited the late Paleozoic primary collisional structure of the Kolyvan’–Tomsk zone.


2020 ◽  
Author(s):  
Remi J.G. Charton

Our understanding of the Earth’s interior is limited by the access we have of its deep layers, while the knowledge we have of Earth’s evolution is restricted to harvested information from the present state of our planet. We therefore use proxies, physical and numerical models, and observations made on and from the surface of the Earth. The landscape results from a combination of processes operating at the surface and in the subsurface. Thus, if one knows how to read the landscape, one may unfold its geological evolution.In the past decade, numerous studies have documented km-scale upward and downward vertical movements in the continental rifted margins of the Atlantic Ocean and in their hinterlands. These movements, described as exhumation (upward) and subsidence (downward), have been labelled as “unpredicted” and/or “unexpected”. ‘Unpredicted’ because conceptual, physical, and numerical models that we dispose of for the evolution of continental margins do not generally account for these relatively recent observations. ‘Unexpected’ because the km-scale vertical movements occurred when our record of the geological history is insufficient to support them. As yet, the mechanisms responsible for the km-scale vertical movements remain enigmatic.One of the common techniques used by geoscientists to investigate the past kinematics of the continental crust is to couple ‘low-temperature thermochronology’ and ‘time-temperature modelling’. In Morocco alone, over twenty studies were conducted following this approach. The reason behind this abundance of studies and the related enthusiasm of researchers towards Moroccan geology is due to its puzzling landscapes and complex history. In this Thesis, we investigate unconstrained aspects of the km-scale vertical movements that occurred in Morocco and its surroundings (Canary Islands, Algeria, Mali, and Mauritania). The transition area between generally subsiding domains and mostly exhuming domains, yet poorly understood, is discussed via the evolution of a profile, running across the rifted continental margin (chapter 2). Low-temperature thermochronology data from the central Morocco coastal area document a km-scale exhumation between the Permian and the Early/Middle Jurassic. The related erosion fed sediments to the subsiding Mesozoic basin to the northwest. Basement rocks along the transect were subsequently buried between the Late Jurassic and the Early Cretaceous. From late Early/Late Cretaceous onwards, rocks present along the transect were exhumed to their present-day position.The post-Variscan thermal and geological history of the Anti-Atlas belt in central Morocco is constrained with a transect constructed along strike of the belt (chapter 3). The initial episode occurred in the Late Triassic and led to a km-scale exhumation of crustal rocks by the end of the Middle Jurassic. The following phase was characterised by basement subsidence and occurred during the Late Jurassic and most of the Early Cretaceous. The basement rocks were then slowly brought to the surface after experiencing a km-scale exhumation throughout the Late Cretaceous and the Cenozoic. The exhumation episodes extended into the interior of the African tectonic plate, perhaps beyond the sampled belt itself. Exhumation rates and fluxes of material eroded from the hinterlands of the Moroccan rifted margin were quantified from the Permian (chapter 4). The high denudation rates, obtained in central Morocco during the Early to Middle Jurassic and in northern Morocco during the Neogene, are comparable to values typical of rift flank, domal, or structural uplifts. These are obtained in central Morocco during the Early to Middle Jurassic and in northern Morocco during the Neogene. Exhumation rates for other periods in northern to southern Morocco average around ‘normal’ denudation values. Periods of high production of sediments in the investigated source areas are the Permian, the Jurassic, the Early Cretaceous, and the NeogeneThe Phanerozoic evolution of source-to-sink systems in Morocco and surroundings is illustrated in several maps (chapter 5). Substantial shifts in the source areas were evidenced between the central and northern Moroccan domains during the Middle-Late Jurassic and between the Meseta and the Anti-Atlas during the Early-Late Cretaceous. Finally, the mechanisms responsible for the onset and subsistence of the unpredicted km-scale vertical movements are discussed (chapter 6). We propose that a combination of the large-scale crustal folding, mantle-driven dynamic topography, and thermal subsidence, superimposed to changes in climates, sea level and erodibility of the exposed rocks, were crucial to the timing, amplitude, and style of the observed vertical movements.The km-scale vertical movements will continue to be studied for years to come. Expectantly, this Thesis will deliver sufficiently robust grounds for further elaborated and integrated studies in Morocco and beyond.


Sign in / Sign up

Export Citation Format

Share Document