GREENSAND RESERVOIRS IN SILICICLASTIC SHORELINE SYSTEMS: FACIES MODELS FOR HYDROCARBON EXPLORATION

1998 ◽  
Vol 38 (2) ◽  
pp. 132
Author(s):  
I.A. Dyson

Greensand reservoirs are particularly significant in siliciclastic shoreline systems. Formation of autochthonous glauconite is restricted almost exclusively to the rising limb of the relative sea level (RSL) curve. Depositional environments that are typically developed in response to a rise in RSL are estuaries, barrier bars and shoreface sands. In this setting, the greensands are diachronous and exploration for hydrocarbon reservoirs should ideally be based on a sequence stratigraphic framework. These deposits are characterised by a number of significant surfaces that differ greatly in their origin, geographic extent and chronostratigraphic significance, and their thickness depends on the rate of RSL rise and sediment supply. The identification of significant surfaces bounding or contained within depositional sequences is critical, especially where drillhole samples are either unreliable or not available for geochemical and palynological analysis. Abrupt physical and chemical changes often occur on or across these surfaces, e.g. porosity, permeability and the presence of Fe-rich authigenic minerals such as glauconite and siderite. Greensands deposited in estuarine, barrier bar and shoreforce environments have excellent oil and gas potentail. Early Cretaceous greensand reservoirs from the North West Shelf are best developed where they overlie ravinement surfaces. Recognition of greensands within estuarine, barrier bar and shoreface environments is dependent on the correct identification of facies and the subsequent interpretation of the bounding discontinuities.


1992 ◽  
Vol 6 ◽  
pp. 176-176
Author(s):  
H. R. Lane ◽  
M. W. Frye ◽  
G. D. Couples

Biothems are regional wedge- or lens-shaped bodies of strata that are: bounded shelfward or cratonward by paleontologically recognizable unconformities; generally thicken on marine shelves, where they are typically conformable with underlying and overlying biothems; are commonly thinner or represent “starved” sequences further basinward; and in their most basinward extent, are either bounded by biostratigraphically recognizable unconformities or are conformable with underlying and overlying biothems. Biothems are practical units whose definition and degree of refinement are dependent on the quality and availability of biostratigraphic control. As recognized to date, biothems have a logical distribution of faunal and floral components, as well as facies groupings that represent internally consistent and logical sequences of depositional environments. The use of biothems as primary sequence stratigraphic units places the emphasis on relative time in a stratigraphic framework.A west-to-east transect within the North American Mississippian System, which extends from the Basin and Range Province, across the Transcontinental Arch (TA) and into the Anadarko Basin, was constructed to demonstrate the regional distribution and tectono-stratigraphic significance of biothems relative to the axis of the TA. The relationships portrayed on the transect, tied to an understanding of North American Mississippian paleogeography, imply that biothems deposited during relative highstand events on one flank of the TA are time-equivalent to biothems deposited during relative lowstand events on the opposite flank of the TA. This distribution is interpreted to have been controlled by intraplate tectonic events that formed “piano-key” basins along the flanks of the TA. The spatial patterns of these basins are not consistent with published models of basin evolution. A further conclusion is that the lack of transgressive or regressive coincident Mississippian biothems on either flank of the TA suggests that it is inadvisable to impose the Mississippi Valley-derived eustasy curve on western flank depositional sequences.



2007 ◽  
Vol 47 (1) ◽  
pp. 55 ◽  
Author(s):  
R.J. Seggie ◽  
S.C. Lang ◽  
N.M. Marshall ◽  
C.J. Cubitt ◽  
D. Alsop ◽  
...  

An integrated geological study of the Rankin Trend of the North West Shelf, Australia, was undertaken to underpin the ongoing development of the giant gas fields it contains. The study applied an improved understanding ofthe regional stratigraphy in conjunction with interpretation of the regional-scale Demeter 3D seismic survey and focussed on existing fields, undeveloped discoveries, and exploration prospects. The study included a redescription of 1,500 m of core, a new facies-based petrological analysis, a revision of the well-based stratigraphy and palaeogeographic mapping, and a seismic stratigraphic analysis. Reservoir production and hydrodynamic data were also integrated. The stratigraphic framework was improved by implementing a broad range of depositional and facies analogues and a system-wide sequence stratigraphic approach to understanding lateral and vertical stacking patterns of the reservoir succession. Visualisation and modelling technologies were also employed to more adequately describe genetic reservoir packages.Specific outcomes include: improved correlation of reservoir sequences, application of appropriate subsurface depositional analogues to field descriptions, updated palaeogeographic maps and recognition of palaeosols as stratigraphic marker horizons—resulting in a more consistent regional interpretation framework. This forms the basis for seismic stratigraphic interpretation away from well control.The new regional geological model has enabled the linkage of exploration, development and production understanding across the North West Shelf assets as well as management of geological uncertainties.



2002 ◽  
Vol 8 (2-3) ◽  
pp. 206-208
Author(s):  
V.G. Osadchyi ◽  
◽  
O.A. Prykhod'ko ◽  
I.I. Hrytsyk ◽  
◽  
...  


2020 ◽  
Vol 57 (11) ◽  
pp. 1289-1304
Author(s):  
Brandon M. Keough ◽  
Olivia A. King ◽  
Matthew R. Stimson ◽  
Page C. Quinton ◽  
Michael C. Rygel

The Maritimes Basin of Atlantic Canada contains a rich record of Pennsylvanian cyclothems. Previous studies have focused on rapidly subsiding depocenters in the central part of the basin where Carboniferous successions feature cyclic alternations between terrestrial and marginal marine strata. In contrast, the Pennsylvanian Clifton Formation was deposited on the relatively stable New Brunswick platform and contains almost entirely terrestrial strata. Although early studies of the Clifton Formation noted a cyclic architecture, particularly within Member B, this unit has remained understudied. We provide a sedimentological and sequence stratigraphic framework for the lower 85 m of Member B and interpret our results relative to a broader regional framework. Near the base of the study interval, the highstand systems tract is composed of red floodplain mudrocks; overlying sequence boundaries are composed of calcretes and (or) channels. The transgressive systems tract and maximum flooding surface are represented by coals and aquatic bivalve-bearing mudrocks. Moving upward through the section, the architecture of the highstand systems tract remains largely unchanged while sequence-bounding paleosols become less well developed, the transgressive systems tract becomes thinner and eventually not preserved, and the maximum flooding surface is only occasionally preserved, possibly represented by carbonaceous shales. These changes in cyclic architecture may be attributed to changes in the magnitude of glacioeustatic fluctuations, climate, and (or) the accommodation/sediment supply ratio. The results of this study show that the Clifton Formation represents the terrestrial/proximal endmember for cyclicity in the Maritimes Basin and provide new insight into paleotopography as a possible control on cyclothem architecture.



Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3802
Author(s):  
Jun Li ◽  
Xiaoying Zhang ◽  
Bin Lu ◽  
Raheel Ahmed ◽  
Qian Zhang

Geological modelling is an important topic of oil and gas exploration and production. A new knowledge driven methodology of geological modelling is proposed to address the problem of “hard data” limitation and modelling efficiency of the conventional data driven methodology. Accordingly, a new geological modelling software (DMatlas) (V1.0, Dimue, Wuhan, China) has been developed adopting a grid-free, object-based methodology. Conceptual facies models can be created for various depositional environments (such as fluvial, delta and carbonates). The models can be built largely based on geologists’ understandings with “soft data” such as outcrops analysis and geological maps from public literatures. Basic structures (fault, folds, and discrete fracture network) can be easily constructed according to their main features. In this methodology, models can be shared and re-used by other modelers or projects. Large number of model templates help to improve the modelling work efficiency. To demonstrate the tool, two case studies of geological modelling with knowledge driven methodology are introduced: (1) Suizhong 36-1 field which is a delta depositional environment in Bohai basin, China; (2) a site of the north Oman fracture system. The case studies show the efficiency and reliability within the new methodology.



1970 ◽  
Vol 107 (4) ◽  
pp. 297-317 ◽  
Author(s):  
M. G. Laird ◽  
W. S. McKerrow

SummaryThis work describes the Wenlock sedimentary sequences south of Killary Harbour where the fullest successions in north-west Galway are exposed; much of the Upper Silurian in the east (Joyces Country) has been removed by erosion.The Wenlock beds (the Upper Owenduff and Killary Harbour Groups) rest on shallow marine and continental sediments (the Lower Owenduff Group) of Upper Llandovery (C5–6) age. Conglomerates near the base of the Wenlock are followed by 1,500 m of sandstones, which are mostly turbidites and which contain Middle Wenlock graptolites. These basin deposits are succeeded by a transitional sequence of rise, slope and shelf clastics, also of Middle Wenlock age. The youngest Silurian beds exposed are 800 m of red lagoonal deposits withLingula.During Wenlock times, the sediment supply to north-west Galway was mainly from the north and north-west. This observation fits well with the regional picture which places Galway near the north-west margin of a Silurian basin which extended eastwards across Ireland.



2018 ◽  
Vol 58 (2) ◽  
pp. 719
Author(s):  
Lourens Jacobs ◽  
Nancy Nguyen ◽  
Ryan Beccarelli

Woodside is an Australian oil and gas company and a leading global operator of offshore gas platforms and onshore LNG processing facilities. It is a public company listed on the Australian Securities Exchange headquartered in Perth, Western Australia. Woodside operates the Goodwyn A gas platform on behalf of the North West Shelf (NWS) Project. Woodside assessed Li-ion battery technology and considered the technology mature and ready to be utilised on offshore and onshore operating assets. Woodside operates dedicated islanded gas turbine power generation at each of its onshore and offshore facilities. It was concluded that a large battery energy storage solution (BESS) can deliver several advantages if connected to such an islanded power generation system. The most significant benefit materialises by using a BESS as backup (or spinning reserve) for the gas turbine generators (GTGs). Woodside decided to pioneer the Li-ion BESS technology in a first of its kind application on the NWS Project offshore Goodwyn A gas platform. The Goodwyn A BESS is designed for a 1 MW power and 1 MWh energy capacity, which is considered sufficient to provide the spinning reserve for the Goodwyn A platform. Currently, Goodwyn A operates four 3.2 MW GTGs to provide a typical load of 7–8 MW, with one GTG providing the N+1 spinning reserve. When the BESS is connected to the power generation system, Goodwyn A will operate three GTGs, with the BESS proving the backup in case one of the GTGs trip. The BESS will provide the full 1 MW for a minimum of 1 h, which will give the operators enough time to start the standby GTG or adjust the facility loads (load shedding). The result will be a decrease in overall fuel gas consumption (due to better efficiencies on the remaining GTGs in operation) and a related reduction in CO2 emissions. The project supports the overall objective of the North West Shelf Project to improve the energy intensity of its facilities by 5% by 2020. Woodside believes that developing capability and experience on the installation of BESSs, using Goodwyn A as an early adopter, will facilitate similar and larger installations on other Woodside operated offshore and onshore assets. This is one of the technologies Woodside believes will play an important role to ensure a lower carbon future globally.



2020 ◽  
Vol 60 (2) ◽  
pp. 588
Author(s):  
Meysam Banimahd ◽  
Steve Tyler ◽  
Matthew Kuo ◽  
Fiona Chow

The July 2019 magnitude 6.6 earthquake 200 km offshore from Broome is a recent reminder of the significant risk that earthquakes pose to oil and gas infrastructure in Australia. Unlike tropical cyclones, there are no reliable methods for predicting the timing, location and magnitude of imminent earthquakes. Appropriate risk management is therefore required, together with the implementation of emergency response and integrity management procedures, to manage the potential impacts to health, safety, process safety, the environment and production. Given the concentration of oil and gas infrastructure in the north west of Australia, a collaborative approach is advantageous for earthquake risk management and emergency response measures. This paper shares Woodside’s earthquake risk and integrity management procedures with the aim of enabling appropriate quality and consistency throughout the industry. The paper reviews state-of-the-art international practice in earthquake risk management for critical infrastructure from design to operation. Applicable seismic design criteria, likely failure modes and performance requirements are also described. Woodside’s real-time earthquake alert and integrity management systems are presented. Recommendations are made on best practice for earthquake risk management in the region and areas for further collaboration and improvement within the industry.



2018 ◽  
Vol 58 (2) ◽  
pp. 871 ◽  
Author(s):  
Melissa Thompson ◽  
Fred Wehr ◽  
Jack Woodward ◽  
Jon Minken ◽  
Gino D'Orazio ◽  
...  

Commencing in 2014, Quadrant Energy and partners have undertaken an active exploration program in the Bedout Sub-basin with a 100% success rate, discovering four hydrocarbon accumulations with four wells. The primary exploration target in the basin, the Middle Triassic Lower Keraudren Formation, encompasses the reservoirs, source rocks and seals that have trapped hydrocarbons in a self-contained petroleum system. This petroleum system is older than the traditional plays on the North-West Shelf and before recent activity was very poorly understood and easily overlooked. Key reservoirs occur at burial depths of 3500–5500 m, deeper than many of the traditional plays on the North-West Shelf and exhibit variable reservoir quality. Oil and gas-condensate discovered in the first two wells, Phoenix South-1 and Roc-1, raised key questions on the preservation of effective porosity and productivity sufficient to support a commercial development. With the acquisition and detailed interpretation of 119 m of core over the Caley Member reservoir in Roc-2 and a successful drill stem test that was surface equipment constrained to 55 MMscf/d, the productive potential of this reservoir interval has been confirmed. The results of the exploration program to date, combined with acquisition of new 3D/2D seismic data, have enabled a deeper understanding of the potential of the Bedout Sub-basin. A detailed basin model has been developed and a large suite of prospects and leads are recognised across a family of hydrocarbon plays. Two key wells currently scheduled for 2018 (Phoenix South-3 and Dorado-1) will provide critical information about the scale of this opportunity.



Sign in / Sign up

Export Citation Format

Share Document