Estimation of genetic parameters for lambing ease, birthweight and gestation length in Australian sheep

2016 ◽  
Vol 56 (5) ◽  
pp. 934 ◽  
Author(s):  
L. Li ◽  
D. J. Brown

This study presents estimates of genetic parameters for lambing ease (LE), birthweight (BW) and gestation length (GL) in Australian terminal sire sheep breeds using data from the Sheep Genetics LAMBPLAN database. LE was scored on lambs on a 1–5 scale, with 1 being no assistance and 5 being other such as special veterinary assistance. The full dataset consisted of 43 448 records on LE and its two subsets (the single and twin subsets) based on the birth type of the litter were analysed. Four models with different combinations of random effects consisting of direct genetic, maternal genetic and maternal permanent environmental effects were compared. All traits were analysed using linear animal models and linear sire models with LE further analysed by threshold sire models for all datasets to evaluate the influence of datasets and models on the estimation of genetic parameters. The results showed that multiple-born lambs had shorter GL, less BW and less lambing difficulty than single-born lambs. Lambing difficulty decreased with the increase of dam age from 1.5 to 4.5 years, and then increased afterwards. Genetic parameters using linear animal models were similar to those using linear sire models for all traits. Phenotypic variance and direct heritability were higher for single-born lambs compared with twin-born lambs. No significant maternal permanent environmental effect was detected for LE. Based on results using linear animal models with the full dataset, the direct heritabilities were 0.06 ± 0.01, 0.15 ± 0.01 and 0.52 ± 0.02, the maternal heritabilities were 0.03 ± 0.01, 0.15 ± 0.01 and 0.13 ± 0.02 for LE, BW and GL, respectively. The proportions of maternal permanent environmental effects to the total variances were 0.13 ± 0.01 for BW. Low to moderate direct genetic correlations of 0.31 ± 0.09 (LE and BW), 0.24 ± 0.11 (LE and GL) and 0.08 ± 0.08 (BW and GL) were estimated using tri-variate analysis from the full dataset, indicating the trend that lambs with greater BW and longer GL would result in more lambing difficulty.

2012 ◽  
Vol 55 (5) ◽  
pp. 420-426
Author(s):  
N. G. Hossein-Zadeh

Abstract. Calving records from the Animal Breeding Centre of Iran collected from January 1995 to December 2007 and comprising 217973 calving events of Holsteins from 704 dairy herds were analysed using univariate and bivariate linear animal models to estimate heritabilities and genetic correlations for energy-corrected 305-d milk yield (ECM) in the first three lactations of Holstein cows. Genetic trends were obtained by regressing yearly mean estimates of breeding values on calving year. Average ECM increased from parity 1 through parity 3. Estimates of heritabilities were from 0.14 to 0.21 for ECM and decreased over the parities. The greatest genetic correlations were between ECM2 and ECM3 (0.96), and the greatest phenotypic correlations were between ECM1 and ECM2 (0.57) and ECM2 and ECM3 (0.57). The high and positive genetic correlations between ECM traits at different lactations are evidence for common genetic and physiological mechanism controlling these traits. There were positive and increasing phenotypic and genetic trends for ECM over the years (P<0.001). Higher heritability of the ECM in the first parity along with the high genetic correlations between first-lactation ECM with these traits in other lactations shows that higher potential exists for selecting animals for ECM based on their first parity records.


Animals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 715 ◽  
Author(s):  
Bryan Irvine Lopez ◽  
Ju-Hwan Son ◽  
Kangseok Seo ◽  
Dajeong Lim

Genetic parameters for the reproductive traits of Hanwoo cattle were estimated using data obtained from 15,355 cows in 92 herds across South Korea, which were inseminated from May 1997 to July 2016. An “average information” restricted maximum likelihood (REML) procedure that fit in single-trait and multi-trait animal models was used to estimate the variance components of age at first calving (AFC), calving interval (CI), days open (DO), and gestation length (GL). Results showed the low estimates of heritability for all reproductive traits from both single-trait and multi-trait models. Estimates of heritability for AFC were 0.08 and 0.10 with single-trait and multi-trait models, respectively, while the estimates of heritability using the same animal models ranged from 0.01 to 0.07, 0.01 to 0.09, and 0.10 to 0.16 for CI, DO, and GL, accordingly. While AFC showed positive genetic correlations of 0.52 and 0.46 with CI and DO, respectively, the estimates of genetic and phenotypic correlations of GL with AFC were close to zero. Moreover, phenotypic correlations of GL with CI and DO were also close to zero; however, the corresponding genetic correlations were 0.13 and –0.38 for CI and DO, respectively. These estimated variance components and genetic correlations for reproductive traits can be utilized for genetic improvement programs of Hanwoo cattle.


1998 ◽  
Vol 66 (3) ◽  
pp. 685-688 ◽  
Author(s):  
M. J. de Vries ◽  
E. H. van der Waaij ◽  
J. A. M. van Arendonk

AbstractGenetic parameters were estimated for litter size in two prolific sheep breeds, i.e. the Zwartbles and the synthetic breed Swifter. Genetic parameters and breeding values for litter size in different parities were estimated using both a repeatability and a multivariate animal model. The estimated heritability from the repeatability model was 0·10 for the Zwartbles and 0·12 for the Swifter. For the multivariate model, heritability of litter size in first, second and third parity was 0·05, 0·07 and 0·10 for the Zwartbles and 0·09, 0·12 and 0·09 for the Swifter. Genetic correlation for litter size in Swifter was 0·81 between parity 1 and 2 and 0·99 between parity 2 and 3. For the Zwartbles genetic correlations were all very close to unity. Environmental correlations between litter size in subsequent parities were not constant over parities. Phenotypic variance in litter size in both breeds was 0·309 in first parity and was almost 50% higher in later parities. Based on the results it is recommended to apply a multiple trait model.


Author(s):  
I.J. Ohagenyi ◽  
F.C. Iregbu ◽  
V.C. Udeh

Background: This study was conducted to estimate the genetic parameters of body weight and some colour traits in seventh generation (G7) index selected Nigerian Heavy Local Chicken Ecotype (NHLCE) progenies at point of lay to 12 weeks. Methods: 5 sires and 12 hens were used to generate the progenies used for the experiment. Traits measured included weekly body weight, egg colour, beak colour and feather colour. Data collected were subjected to one way analysis of variance in a Paternal half sib analysis using Animal model of SAS (2003). Four weeks body weight measurements, egg colour, beak colour and feather colour for 5 sires ranged from 1.29±0.05 1.54±0.07; 2.55±0.02 to 4.00±0.02; 2.45±0.02 to 4.83±0.02 and 1.73±0.02 to 4.58±0.04 respectively. Result: The new Duncan’s multiple range test shows that sire families are similar (p greater than 0.05) in the body weight and beak colour, but significantly differed (p greater than 0.05) in the egg colour and feather colour. The heritability estimates of mature body weight for week 3 was medium, while estimates of heritability for weekly mature body weight for weeks 1, 2 and 4, egg colour, beak colour and feather colour of NHLCE were low heritability. Low h2 of traits suggest that progeny and pedigree selection could be employed for improvement of the egg colour, beak colour and feather colour of NHLCE. The study showed positive genetic correlations between beak colour and egg colour, negative genetic correlations between beak and feather colour. This means that no decision can be taken in isolation as the selection of one trait will have consequences on other traits.


2013 ◽  
Vol 56 (1) ◽  
pp. 564-572 ◽  
Author(s):  
F. Ghafouri-Kesbi

Abstract. The aim of the present study was to estimate (co)variance components and genetic parameters for average daily gain from birth to weaning (ADGa), weaning to 6 months (ADGb), weaning to 9 months (ADGc), 6 months to 9 months (ADGd) and corresponding Kleiber ratios (KRa, KRb, KRc and KRd) in Mehraban sheep. A derivative-free algorithm combined with a series of six univariate linear animal models was used to estimate phenotypic variance and its direct, maternal and residual components. In addition, bivariate analyses were done to estimate (co)variance components between traits. Estimates of direct heritability (h2) were 0.10, 0.11, 0.16, 0.09, 0.13, 0.13, 0.15 and 0.08 for ADGa, ADGb, ADGc, ADGd, KRa, KRb, KRc and KRd, respectively and indicate that in Mehraban sheep genes contribute very little to the variance of the growth rate and Kleiber ratio. Estimates of maternal heritability (m2) were 0.10, 0.08 and 0.05 for ADGa, KRa and KRb, respectively. Direct additive genetic correlations ranged from −0.32 (KRa-KRd) to 0.99 (ADGb-KRb) and phenotypic correlations ranged from −0.53 (ADGa- ADGd) to 0.99 (ADGa-KRa). Estimates of direct heritability and genetic correlations show that genetic improvement in efficiency of feed utilization through selection programmes is possible, though it would generate a relatively slow genetic progress.


Animals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 411
Author(s):  
Judith C. Miranda ◽  
José M. León ◽  
Camillo Pieramati ◽  
Mayra M. Gómez ◽  
Jesús Valdés ◽  
...  

This paper studies parameters of a lactation curve such as peak yield (PY) and persistency (P), which do not conform to the usual selection criteria in the Murciano-Granadina (MG) breed, but are considered to be an alternative to benefit animal welfare without reducing production. Using 315,663 production records (of 122,883 animals) over a period of 24 years (1990–2014), genetic parameters were estimated with uni-, bi- and multivariate analysis using multiple trait derivative free restricted maximum likelihood (MTDFREML). The heritability (h2)/repeatability (re) of PY, yield (Y) and P was estimated as 0.13/0.19, 0.16/0.25 and 0.08/0.09 with the uni-trait and h2 of bi- and multi-traits analysis ranging from 0.16 to 0.17 of Y, while that of PY and Y remained constant. Genetic correlations were high between PY–Y (0.94 ± 0.011) but low between PY–P (–0.16 ± 0.054 to –0.17 ± 0.054) and between Y–P (–0.06 ± 0.058 to –0.05 ± 0.058). Estimates of h2/re were low to intermediate. The selection for Y–PY or both can be implemented given the genetic correlation between these traits. PY–P and Y–P showed low to negligible correlation values indicating that if these traits are implemented in the early stages of evaluation, they would not be to the detriment of PY–Y. The combination of estimated breeding values (EBVs) for all traits would be a good criterion for selection.


2013 ◽  
Vol 93 (1) ◽  
pp. 67-77 ◽  
Author(s):  
G. Maniatis ◽  
N. Demiris ◽  
A. Kranis ◽  
G. Banos ◽  
A. Kominakis

Maniatis, G., Demiris, N., Kranis, A., Banos, G. and Kominakis, A. 2013. Model comparison and estimation of genetic parameters for body weight in commercial broilers. Can. J. Anim. Sci. 93: 67–77. The availability of powerful computing and advances in algorithmic efficiency allow for the consideration of increasingly complex models. Consequently, the development and application of appropriate statistical procedures for model evaluation is becoming increasingly important. This paper is concerned with the application of an alternative model determination criterion (conditional Akaike Information Criterion, cAIC) in a large dataset comprising 203 323 body weights of broilers, pertaining to 7 (BW7) and 35 (BW35) days of age. Seven univariate and seven bivariate models were applied. Direct genetic, maternal genetic and maternal environmental (c2) effects were estimated via REML. The model evaluation criteria included conditional Akaike Information Criterion (cAIC), Bayesian Information Criterion (BIC) and the standard Akaike Information Criterion (henceforth marginal; mAIC). According to cAIC the best-fitting model included direct genetic, maternal genetic and c2 effects. Maternal heritabilities were low (0.10 and 0.03) compared to the direct heritabilities (0.17 and 0.21), while c2 was 0.05 and 0.04 for BW7 and BW35, respectively. BIC and mAIC favoured a model that additionally included a direct-maternal genetic covariance, resulting in highly negative direct-maternal genetic correlations (−0.47 and −0.64 for BW7 and BW35, respectively) and higher direct heritabilities (0.25 and 0.28 for BW7 and BW35, respectively). Results suggest that cAIC can select different animal models than mAIC and BIC with different biological properties.


1995 ◽  
Vol 46 (4) ◽  
pp. 703
Author(s):  
PA Kenney ◽  
ME Goddard ◽  
LP Thatcher

Three and a half thousand lambs from Border Leicester x Merino ewes mated to 133 sires from five Poll Dorset, one White Suffolk, one Siromt, two Meridale and four Merino studs were slaughtered, their carcasses halved and one side divided into six primals. Subcutaneous fat was dissected from all six primals, and bone from only the three rear primals. There were four slaughter groups: average slaughter weights of 30 and 35 kg for ewes and 35 and 45 kg for cryptorchids. Heritabilities and phenotypic and genetic correlations for all traits measured (>50) are published in an appendix. Where comparisons were available, estimates were similar to those for purebred animals. Genetic parameters for various assessments of fat were similar except for channel and omental fat. The GR fat depth was the best predictor for total subcutaneous fat, cannon bone length for total bone, and eye muscle area for total soft tissue. Carcass weight and GR appear to be the most important measurements for use in selection for breeding of sires for the prime lamb industry. Slaughter weight and fat depth at the C site could be used as suitable alternatives on live animals. Production of lean meat is not likely to be increased greatly by including measurements other than liveweight and GR in a selection index. Of the other measurements bone length and eye muscle measurements showed most promise.


2016 ◽  
Vol 56 (5) ◽  
pp. 927 ◽  
Author(s):  
M. G. Jeyaruban ◽  
D. J. Johnston ◽  
B. Tier ◽  
H.-U. Graser

Data on Angus (ANG), Charolais (CHA), Hereford (HER), Limousin (LIM) and Simmental (SIM) cattle were used to estimate genetic parameters for calving difficulty (CD), birthweight (BWT) and gestation length (GL) using threshold-linear models and to examine the effect of inclusion of random effect of sire × herd interaction (SxH) in the models. For models without SxH, estimated heritabilities for direct genetic effect of CD were 0.24 (±0.02), 0.22 (±0.04), 0.31 (±0.02), 0.22 (±0.04) and 0.17 (±0.01) for ANG, CHA, HER, LIM and SIM, respectively, whereas maternal heritabilities ranged from 0.13 to 0.20. Estimated heritabilities for direct genetic effect of BWT were 0.38 (±0.01), 0.37 (±0.03), 0.46 (±0.01), 0.35 (±0.02) and 0.36 (±0.01) for ANG, CHR, HER, LIM and SIM, respectively, whereas maternal heritabilities ranged from 0.08 to 0.11. Estimated heritabilities for direct genetic effect of GL were 0.59 (±0.02), 0.42 (±0.04), 0.50 (±0.03), 0.45 (±0.04) and 0.42 (±0.03) for ANG, CHR, HER, LIM and SIM, respectively, whereas maternal heritabilities ranged from 0.03 to 0.09. Genetic correlations between direct genetic effects of CD with BWT were highly positive and with GL were moderately positive for all five breeds. Estimated genetic correlations between direct genetic effects and maternal genetic effects (rdm) ranged across the five breeds from –0.40 (±0.05) to –0.16 (±0.02), –0.41 (±0.03) to –0.27 (±0.08) and –0.47 (±0.10) to –0.06 (±0.12) for BWT, GL and CD, respectively. Fitting SxH interaction as additional random effect significantly increased the log-likelihood for analyses of BWT, GL and CD of all breeds, except for GL of CHA. The estimated heritabilities were less than or equal to the estimates obtained with models omitting SxH. The rdm increased (i.e. became less negative) for BWT, GL and CD of all five breeds. However, the increase for GL was not substantially high in comparison to the increase observed for BWT and CD. Genetic parameters obtained for BWT, GL and CD, by fitting SxH as an additional random effect, are more appropriate to use in the genetic evaluation of calving ease in BREEDPLAN.


Sign in / Sign up

Export Citation Format

Share Document