Studies on nodulation responses to pelleting of subterranean clover seed.

1961 ◽  
Vol 12 (4) ◽  
pp. 578 ◽  
Author(s):  
JA Thompson

In a series of field experiments on seven soils of pH 6.0 or higher, nodulation of subterranean clover (Trifolium subterraneum L. var. Tallarook) was improved by pelleting the seed with various glues and coating materials, prior to inoculation with dry peat inoculum. On these soils the responses were not related to the chemical properties of the pellet materials. The beneficial effect was apparently the result of physical separation of the seed coat and inoculum. It is postulated that pelleting of seed protects the inoculum from an antibiotic, whlch has been found in subterranean clover seed coats, and which is active against Rhizobium in culture. On a soil of pH 5.1 a nodulation response to two types of pelleting materials was apparently related to the chemical constituents of the coating materials. In this soil there was less evidence of the importance of physical separation of the inoculum from the seed coat. It seems likely that soils may differ considerably in their ability to inactivate the antibiotic. Nodulation was not improved by in situ fumigation, prior to sowing, of two soils of pH 6.0 and 6.6, which indicated that antagonism by soil microorganisms was not the cause of poor nodulation in these soils. Significant nodulation responses to pelleting were obtained in sowings in these fumigated soils.

1999 ◽  
Vol 39 (7) ◽  
pp. 839 ◽  
Author(s):  
B. S. Dear ◽  
G. A. Sandral

Summary. The effect of the herbicides pyridate, imazethapyr and a bromoxynil + diflufenican mixture on subterranean clover (Trifolium subterraneum L.) (cvv. Trikkala and Karridale) and lucerne (Medicago sativa L.) (cv. Aurora) seedlings was examined in randomised plot field experiments in 2 successive years. Responses were compared against an unsprayed control and a standard bromoxynil application. The herbicides and the rates of product applied were: bromoxynil + diflufenican (0.5, 1.0 L/ha), imazethapyr (0.18, 0.3 L/ha), pyridate (1.0, 3.0 L/ha), and bromoxynil (1.4 L/ha). Weeds were removed by hand from the subterranean clover experiments but not the lucerne experiments. Pyridate and imazethapyr were the least phytotoxic of the herbicides applied on both subterranean clover and lucerne. The bromoxynil + diflufenican mixture was the most phytotoxic, causing severe leaf burn and a depression in herbage biomass in both species. Despite the high level of phytotoxicity by some treatments, none of the herbicides reduced lucerne seedling numbers. Lucerne herbage yields in late spring were higher in most sprayed plots compared with the unsprayed control due to the removal of weed competition. Seed yield responses in subterranean clover due to herbicide application ranged from negative responses up to –21% with pyridate to positive responses up to 92% with the bromoxynil + diflufenican treatment relative to the weed-free, unsprayed control. The positive responses were attributed to increased availability of soil water during seed set in treatments in which herbicides suppressed legume biomass. There was a good correlation in both 1992 (R2 = 0.85–0.89) and 1993 (R2 = 0.63–0.73) between the depression in herbage yield in spring and the increase in seed set relative to the control. Soil water under the subterranean clover cultivar Karridale in spring was highest in the bromoxynil and imazethapyr treatments, which produced a large reduction in biomass, and lowest in the control and pyridate treatments, which had showed the least depression in biomass 60 days after treatment application. Although some herbicides cause a high level of phytotoxicity, their use in weedy subterranean clover–lucerne mixtures is justified in view of the small negative, and potentially large positive, effects on subterranean clover seed yield and the increased lucerne yields later in the season due to weed suppression.


1962 ◽  
Vol 13 (4) ◽  
pp. 638 ◽  
Author(s):  
J Brockwell

The influence of seed-pelleting techniques on the inoculation and nodulation of subterranean clover (Trifolium subterraneum L.) was studied in the laboratory and in the field on podzolic soil where clover nodulation following conventional seed inoculation practices was often unsatisfactory. Seed pellets were prepared with the use of 10 different coating materials, three adhesives, and two methods of inoculation. These were sown immediately after preparation or stored for short periods before sowing, and were examined in terms of inoculant survival, nodulation, and plant growth. It was shown that subterranean clover seed pelleted with a lime, blood plus dolomite, or lime plus blood plus dolomite coating attached to the seed with a 45% solution of gum arabic and inoculated by incorporating a commercial peat inoculant within the pellet can be stored for up to 4 weeks before sowing and the viability of the inoculant retained. This is reflected in improved nodulation and in growth of the seedling subsequently produced. Ecological considerations in respect of the establishment of the inoculum in the soil are discussed.


2021 ◽  
Vol 72 (3) ◽  
pp. 223
Author(s):  
Wesley M. Moss ◽  
Andrew L. Guzzomi ◽  
Kevin J. Foster ◽  
Megan H. Ryan ◽  
Phillip G. H. Nichols

Subterranean clover (Trifolium subterraneum L.) is Australia’s most widely sown annual pasture legume. Its widespread use as a pasture plant requires a well-functioning seed production industry, and Australia is the only significant producer of subterranean clover seed globally. However, the sustainability of this industry is under threat due to its reliance on ageing harvest equipment and the resultant environmental impacts. In order to evaluate seed harvesting practices, technology, and issues, we report on case studies, workshops, and a survey of seed producers across southern Australia. The Horwood Bagshaw Clover Harvester, designed in the 1950s, remains the most popular subterranean clover seed harvester. We discuss its use and modifications, and document several contemporary issues facing the seed production industry. Issues are primarily soil erosion and degradation; the expensive, slow and labour-intensive harvest process; and poor reliability and maintainability of harvesters that are now at least 30 years old. We conclude the root cause of these issues is the suction harvest technology utilised by the Horwood Bagshaw Clover Harvester. Analysis of the current harvest system is provided to support the development of new approaches to harvest subterranean clover seeds.


1997 ◽  
Vol 48 (5) ◽  
pp. 683 ◽  
Author(s):  
B. S. Dear ◽  
P. S. Cocks

Subterranean clover seedling numbers and growth in swards containing 1 of 5 perennial pasture species [phalaris (Phalaris aquatica) cv. Sirolan, cocksfoot (Dactylis glomerata) cv. Currie, lucerne (Medicago sativa) cv. Aquarius, wallaby grass (Danthonia richardsonii) cv. Taranna, and lovegrass (Eragrostis curvula) cv. Consol] were compared with those in typical annual pastures and pure clover swards in the wheatbelt of eastern Australia. Presence of a perennial species or the volunteer annual grass (Eragrostis cilianensis) increased the rate of drying of the soil surface (0–5 cm) after late February and May rain, compared with subterranean clover swards. Perennials differed in the rate they dried the soil surface, with the more summer-active lucerne and consul lovegrass drying the profile more rapidly than phalaris. The amount of water in the surface 5 cm, 6 days after the rainfall event on 27–28 February, was strongly negatively correlated (r = –0·75, P < 0·01) with the amount of green perennial biomass, but not related to standing dead material or surface residues. Where perennials were present, a smaller proportion (2–4%) of the clover seed pool produced seedlings in response to late summer rain, compared with pure clover swards (18%). A higher proportion of the seed pool produced seedlings (19–36%) following rain in late autumn but there was no difference between species. The more summer-active perennials (cocksfoot, danthonia, and lucerne) markedly depressed the survival of emerged clover seedlings following both germinations. Of the seedlings that emerged in early March, the proportion remaining by 29 March was 57% in phalaris, 21% in lucerne, 13% in danthonia, and 1% in cocksfoot, compared with a 78% increase in seedlings in pure subterranean clover swards. By 15 May, all perennials had <2 clover seedlings/m2 surviving, compared with 37 in the annual pasture and 964 plants/m2 in pure subterranean clover. Following the May germination, the highest proportion of emerged seedlings surviving until 29 May was in the phalaris swards (40%) and least in the cocksfoot and danthonia swards (2–4%). Presence of a perennial or annual grass decreased (P < 0·05) relative water content of clover seedlings on 15 March from 74% in pure clover swards, to 48% in annual pasture, 34% in phalaris, and 29% in lucerne swards. Clover seedlings growing in pure subterranean swards on 15 March (17 days after germinating rain) were 4 times larger than those in lucerne and twice as large as those in either phalaris or annual pasture. Seed size did not differ between treatments, but available mineral soil nitrogen was significantly higher (P < 0·001) in pure subterranean clover swards (32 mg N/g) compared with perennials (3–13 mg N/g). Strategies such as heavy grazing in late summer to reduce green biomass of the perennials or sowing the perennials at lower densities may reduce the adverse effects that perennials have on subterranean clover seedlings in these drier environments.


2007 ◽  
Vol 58 (2) ◽  
pp. 123 ◽  
Author(s):  
B. S. Dear ◽  
G. A. Sandral ◽  
J. M. Virgona ◽  
A. D. Swan ◽  
B. A. Orchard ◽  
...  

The effect of the density of 3 perennial species, phalaris (Phalaris aquatica L.), wallaby grass (Austrodanthonia richardsonii Kunth), and lucerne (Medicago sativa L.), on seed set, regeneration, and the relative competitiveness of 3 cultivars of subterranean clover (Trifolium subterraneum L.) was examined in 2 environments in the south-eastern Australian wheatbelt. Seed yields of subterranean clover were inversely related to perennial density at both sites over the first 2 years, the relationship varying with perennial species. Phalaris depressed the seed yield of clover more than lucerne and wallaby grass in the second and third year at equivalent densities. Clover seed yield was positively related to clover herbage yield in late spring at both sites, and inversely related to perennial herbage yield. Clover seed yield displayed an increasing linear relationship with the proportion of light reaching the clover understorey in spring, which in turn was inversely related to perennial density and perennial herbage yield. Clover seedling regeneration in mixed swards in autumn was positively related to the size of the summer seed bank, but negatively related to perennial density. Clover seedling survival following a premature germination at Kamarah was inversely correlated to the density of phalaris and lucerne in the sward. The relative competitiveness of the 3 subterranean clover cultivars varied between sites, with climatic conditions (rainfall and growing-season length) having a greater effect on the relative cultivar performance than companion perennial species or density. The later maturing subterranean clover cv. Goulburn became the dominant cultivar at the wetter site, constituting 72% of the seed bank, but declined to only 3–8% of the seed bank at the drier site. The proportion of the early flowering cultivar Dalkeith in the seed bank increased over time at the drier site and was highest (53%) in plots with the highest perennial density. We concluded that although perennial pasture species will depress clover seed yield and subsequent regeneration, these effects could be minimised by reducing perennial densities and exploiting variations in competitiveness between perennial species as identified in this study. Sowing earlier maturing subterranean clover cultivars would only be an advantage in increasing clover content in low-rainfall environments. The findings suggest that clover seed reserves and regeneration could also be increased by using grazing management to reduce the level of shading of clover by perennials, a factor associated with reduced clover seed yield.


2003 ◽  
Vol 43 (10) ◽  
pp. 1221 ◽  
Author(s):  
M. D. A. Bolland ◽  
J. S. Yeates ◽  
M. F. Clarke

The dry herbage yield increase (response) of subterranean clover (Trifolium subterraneum L.)-based pasture (>85% clover) to applications of different sources of sulfur (S) was compared in 7 field experiments on very sandy soils in the > 650 mm annual average rainfall areas of south-western Australia where S deficiency of clover is common when pastures grow rapidly during spring (August–November). The sources compared were single superphosphate, finely grained and coarsely grained gypsum from deposits in south-western Australia, and elemental S. All sources were broadcast (topdressed) once only onto each plot, 3 weeks after pasture emerged at the start of the first growing season. In each subsequent year, fresh fertiliser-S as single superphosphate was applied 3 weeks after pasture emerged to nil-S plots previously not treated with S since the start of the experiment. This was to determine the residual value of sources applied at the start of the experiment in each subsequent year relative to superphosphate freshly-applied in each subsequent year. In addition, superphosphate was also applied 6, 12 and 16 weeks after emergence of pasture in each year, using nil-S plots not previously treated with S since the start of the experiment. Pasture responses to applied S are usually larger after mid-August, so applying S later may match plant demand increasing the effectiveness of S for pasture production and may also reduce leaching losses of the applied S.At the same site, yield increases to applied S varied greatly, from 0 to 300%, at different harvests in the same or different years. These variations in yield responses to applied S are attributed to the net effect of mineralisation of different amounts of S from soil organic matter, dissolution of S from fertilisers, and different amounts of leaching losses of S from soil by rainfall. Within each year at each site, yield increases were mostly larger in spring (September–November) than in autumn (June–August). In the year of application, single superphosphate was equally or more effective than the other sources. In years when large responses to S occurred, applying single superphosphate later in the year was more effective than applying single superphosphate 3 weeks after pasture emerged (standard practice), so within each year the most recently applied single superphosphate treatment was the most effective S source. All sources generally had negligible residual value, so S needed to be applied each year to ensure S deficiency did not reduce pasture production.


1974 ◽  
Vol 14 (71) ◽  
pp. 749 ◽  
Author(s):  
PG Ozanne ◽  
KMW Howes

The effects of four common fertilizers containing calcium on seed production in subterranean clover (Trifolium subterraneum) were measured at six locations over five years in a total of fifteen field experiments. Calcium as a sulphate, carbonate or phosphate salt was applied to subterranean clover pastures either at the start of the growing season (autumn) or at flowering (spring). Gypsum, plaster of Paris, or lime gave large increases in seed yield per unit area and also per unit weight of tops. Spring applications of superphosphate increased seed yields in only two out of four experiments. Gypsum applied in spring at 200-500 kg ha-1 was as effective as 2,000 kg ha-1 of lime applied in autumn. Applications of lime in spring were much less effective. Increased seed yields were due to increases in burr yield, seed number per burr, and mean weight per seed. They were usually accompanied by increases in calcium concentration in the seed. Responses in seed production to calcium applications were obtained in all three sub-species of Trifolium subterraneum. In two experiments, newly sown on a soil type on which subterranean clover regeneration and persistence is commonly very poor, applied calcium doubled or quadrupled seed set. In 13 experiments using soils on which subterranean clover had persisted as the major component of the pasture for several years, calcium in the year of application increased the total seed bank by 6 to 31 per cent, and the current seed set by a greater amount.


1985 ◽  
Vol 25 (3) ◽  
pp. 568 ◽  
Author(s):  
GB Taylor

In a rotation of 1 year pasture/l year crop, a subterranean clover (Trifolium subterraneum cv. Daliak) pasture was either left untilled or subjected to minimum or conventional tillage. One set of tillage treatments was imposed in each ofthree crop years while another set of treatments was imposed in only the first crop year. Regenerating clover plants were prevented from setting seed. In the first crop, 44% of the clover seeds were buried below 2 cm of soil by minimum tillage; this proportion was 65% in the conventional tillage treatment. In the first pasture regeneration year, seedling densities were highest in the no-tillage treatment. Conversely, there were more residual seeds in the tilled treatments and, in the second and third pasture regeneration years, this led to higher seedling densities than in the no-tillage treatment. The effects of tillage were more marked in the conventional than in the minimum-tillage treatment. Clover establishment was improved by repeat tillage operations which returned some of the buried seeds closer to the soil surface. Although more seedlings overall were obtained from the no-tillage treatment, the disadvantage of fewer seedlings in the tilled treatments was offset by the spread of seedling establishment over a number of pasture years. This spread, which would be more marked with harder-seeded cultivars, could be desirable in environments in which clover seed production is unreliable.


2015 ◽  
Vol 66 (11) ◽  
pp. 1197 ◽  
Author(s):  
Leo J. Hamilton ◽  
Kevin F. M. Reed ◽  
Elainne M. A. Leach ◽  
John Brockwell

Field and glasshouse experiments confirmed the occurrence of boron (B) deficiency in subterranean clover (Trifolium subterraneum L.) pasture in eastern Victoria. Diminished productivity was linked to the small-seededness of clover and the poor effectiveness of clover root-nodule bacteria (rhizobia, Rhizobium leguminosarum bv. trifolii). Productivity, especially of clover and clover seed, increased following applications of up to 6 kg B ha–1 (P < 0.001). The response was delayed, occurring several years after the initial application of B, unless the land was resown with fresh clover seed inoculated with an effective strain of rhizobia. B deficiency in the nodulated legume induced conditions within the plant and or its rhizobia that led to impaired nitrogen (N2) fixation. Glasshouse research indicated that populations of soil-borne rhizobia taken from B-deficient soils were poorly effective in N2 fixation and that rhizobia from soils growing subterranean clover cv. Leura were significantly less effective (P < 0.05) than rhizobia from a soil growing cv. Mt Barker. Additionally, subterranean clover seed generated in B-deficient soils was at least one-third smaller than the seed of commercial seed but responded to inoculation with effective rhizobia. This indicated that any symbiotic malfunction of clover from B-deficient soils was not due to an inability to respond to nitrogen per se. On the other hand, cv. Leura from B-deficient soils fixed significantly less N2 than commercial cv. Leura when each was inoculated with rhizobia from B-deficient soils.


1964 ◽  
Vol 15 (1) ◽  
pp. 61 ◽  
Author(s):  
RC Rossiter

The results of two long-term field experiments and two 1-year experiments are reported. In three of these, severe phosphate deficiency was present initially. At high phosphate supply, the annual total yield was not significantly related to age of pasture over periods of 10–13 years. At intermediate and low supply, yields relative to high phosphate supply increased significantly with time; these increases are believed to demonstrate residual effects of phosphate. Indirect evidence for nitrogen accretion from clover under severely phosphate-deficient conditions is presented. Sward components—in the long term—responded differentially to phosphate supply. With very low phosphate, erodium (Erodium botrys (Cav.) Bertol.) and flatweed (Hypochoeris glabra L.) were dominant; whereas with high phosphate, cape-weed (Cryptostemma calendula (L.) Druce) and ripgut brome grass (Bromus rigidus Roth)—or else barley grass (Hordeum leporinum Link)—were dominant. Subterranean clover (Trifolium subterraneum L.), though present under these extremes, was relatively more plentiful at intermediate levels of supply. However, at "steady state" conditions, the range in clover content was fairly narrow (from c. 20 to 40%). The significance of these findings to a sheep infertility problem ("clover disease") of subterranean clover-dominant pastures is discussed.


Sign in / Sign up

Export Citation Format

Share Document