Factors limiting the intake of feed by sheep. 12. Digesta load and chewing activities in relation to lactation and its attendant increase in voluntary roughage consumption

1988 ◽  
Vol 39 (4) ◽  
pp. 671 ◽  
Author(s):  
RH Weston

Lactating and non-pregnant, non-lactating ewes were compared with respect to voluntary consumption of a medium quality roughage and various aspects of digestion of the roughage as fed at intakes near ad libitum. The lactating ewes, relative to their control counterparts (i) consumed more roughage, (ii) ate more rapidly, (iii) maintained higher levels of digesta in the rumen, omasum, abomasum, and caecum + proximal colon, (iv) showed no difference in particle size distribution in rumen digesta, (v) exhibited enhanced rumination activities and (vi) on average, cleared a particulate marker more rapidly from the rumen. It was estimated that the lactating ewes had a higher energy deficit than the controls. It was concluded that (i) the greater rate of removal of feed dry matter from the reticula-rumen (mass/time) during lactation was largely attributable to the enhancing effect of the prevailing higher reticulo-rumen digesta load on rumination, digestion and propulsion, (ii) neither capacity to use energy nor physiological capability of the reticula-rumen played a primary limiting role in the regulation of roughage intake, with the control of animals, (iii) the comparative data are consistent with a concept that energy metabolism and digesta load interact in the regulation of roughage intake, and (iv) scope exists for increasing consumption of the roughage by appropriate physiological manipulation of the animal.

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1085
Author(s):  
Elizabeth M. Buckhaus ◽  
Dathan T. Smerchek ◽  
Zachary K. Smith

Background:  Differing fractions of a batch of feed, differing ingredient characteristics, and inadequate mix time can lead to non-uniformity within a mix of feed.  Methods: The experiment was designed as a 5 x 2 x 2 factorial arrangement with seven replications per simple treatment mean. Factors included: 1) batch fraction (BF; n = 5); 2) corn silage inclusion level (CSLVL; n = 2) 15% or 30% inclusion (dry matter basis); and 3) mixing duration (DR; n = 2) of 20 or 25 mixer revolutions. Data were analyzed as a completely randomized design using a binomial approach. The Penn State Particle Separator was used to separate fractions of the total mixed ration (TMR). Results: No interactions between BF, CSLVL, and DR were detected (P ≥ 0.31) for any dependent variables. There was an increase (P = 0.01) in retention on the 19 mm sieve from the first BF compared to the last BF. CSLVL altered (P = 0.01) retention on the 19 mm sieve. Increasing DR from 20 to 25 revolutions had no appreciable influence (P = 0.23) on particles greater than 19 mm.  CSLVL (P = 0.01) and DR (P = 0.01) altered particle retention on the 8 mm sieve. BF (P = 0.01), CSLVL (P = 0.01), and DR (P = 0.02), influenced particle retention on the 4 mm sieve. CSLVL impacted (P ≤ 0.01) particles remaining in the bottom pan and particles greater than 4 mm. BF (P = 0.01) and CSLVL (P = 0.01) altered particles greater than 8 mm. Conclusions: These data indicate that BF and CSLVL fed alters particle size distribution that in turn could alter dry matter intake, dietary net energy content, and influence daily gain. Mixing DR had no appreciable influence on particle size distribution of the TMR.


2020 ◽  
Vol 69 (4) ◽  
pp. 102-106
Author(s):  
Shota Ohki ◽  
Shingo Mineta ◽  
Mamoru Mizunuma ◽  
Soichi Oka ◽  
Masayuki Tsuda

1995 ◽  
Vol 5 (1) ◽  
pp. 75-87 ◽  
Author(s):  
Christine M. Woodall ◽  
James E. Peters ◽  
Richard O. Buckius

1998 ◽  
Vol 84 (5) ◽  
pp. 387-392 ◽  
Author(s):  
Takashi INOUE ◽  
Yuzo HOSOI ◽  
Koe NAKAJIMA ◽  
Hiroyuki TAKENAKA ◽  
Tomonori HANYUDA

2020 ◽  
Vol 86 (1) ◽  
pp. 32-37
Author(s):  
Valeria A. Brodskaya ◽  
Oksana A. Molkova ◽  
Kira B. Zhogova ◽  
Inga V. Astakhova

Powder materials are widely used in the manufacture of electrochemical elements of thermal chemical sources of current. Electrochemical behavior of the powders depends on the shape and size of their particles. The results of the study of the microstructure and particles of the powders of vanadium (III), (V) oxides and lithium aluminate obtained by transmission electron and atomic force microscopy, X-ray diffraction and gas adsorption analyses are presented. It is found that the sizes of vanadium (III) and vanadium (V) oxide particles range within 70 – 600 and 40 – 350 nm, respectively. The size of the coherent-scattering regions of the vanadium oxide particles lies in the lower range limit which can be attributed to small size of the structural elements (crystallites). An average volumetric-surface diameter calculated on the basis of the surface specific area is close to the upper range limit which can be explained by the partial agglomeration of the powder particles. Unlike the vanadium oxide particles, the range of the particle size distribution of the lithium aluminate powder is narrower — 50 – 110 nm. The values of crystallite sizes are close to the maximum of the particle size distribution. Microstructural analysis showed that the particles in the samples of vanadium oxides have a rounded (V2O3) or elongated (V2O5) shape; whereas the particles of lithium aluminate powder exhibit lamellar structure. At the same time, for different batches of the same material, the particle size distribution is similar, which indicates the reproducibility of the technologies for their manufacture. The data obtained can be used to control the constancy of the particle size distribution of powder materials.


Sign in / Sign up

Export Citation Format

Share Document