scholarly journals The Canis Major Dwarf Galaxy

2004 ◽  
Vol 21 (4) ◽  
pp. 371-374
Author(s):  
Geraint F. Lewis ◽  
Rodrigo A. Ibata ◽  
Michael J. Irwin ◽  
Nicolas F. Martin ◽  
Michele Bellazzini ◽  
...  

AbstractRecent observational evidence suggests that the Sagittarius dwarf galaxy represents the only major ongoing accretion event in the Galactic halo, accounting for the majority of stellar debris identified there. This paper summarises the recent discovery of another potential Milky Way accretion event, the Canis Major dwarf galaxy. This dwarf satellite galaxy is found to lie just below the Galactic plane and appears to be on an equatorial orbit. Unlike Sagittarius, which is contributing to the Galactic halo, the location and eventual demise of Canis Major suggests that it represents a building block of the thick disk.

2018 ◽  
Vol 14 (S344) ◽  
pp. 134-138
Author(s):  
W. J. Schuster ◽  
E. Moreno ◽  
J. G. Fernández-Trincado

AbstractOrbital resonances in the Galactic halo have been studied using the Galactic mass model of Pichardo et al. (2003, 2004), including a Galactic bar. For the two moving groups of the Galactic halo, G18-39 and G21-22 (Silva et al. 2012), the majority of stars in both groups appear trapped in two resonances over the Galactic plane, generated by the bar. We have taken the rotation speed of the bar, Ωb, as 45-55 km s-1 kpc-1. So, these two moving groups are part of stellar supergroups which populate these two resonances. The position of these two groups in the Bottlinger diagram can be explained by the mean (U,V) field generated by these two resonances crossing the solar vicinity, in contrast with the alternate explanation of Silva et al. (2012), based on the simulations of Meza et al. (2005), that these two groups, seen as two peaks in the U Galactic velocity, have been created by the accretion of a dwarf galaxy by the Milky Way, such as that of Ω Centauri.


2017 ◽  
Vol 13 (S334) ◽  
pp. 29-33
Author(s):  
Baslio Santiago ◽  
Elmer Luque ◽  
Adriano Pieres ◽  
Anna Bárbara Queiroz

AbstractThe stellar spheroidal components of the Milky-Way contain the oldest and most metal poor of its stars. Inevitably the processes governing the early stages of Galaxy evolution are imprinted upon them. According to the currently favoured hierarchical bottom-up scenario of galaxy formation, these components, specially the Galactic halo, are the repository of most of the mass built up from accretion events in those early stages. These events are still going on today, as attested by the long stellar streams associated to the Sagittarius dwarf galaxy and several other observed tidal substructure, whose geometry, extent, and kinematics are important constraints to reconstruct the MW gravitational potential and infer its total (visible + dark) mass. In addition, the remaining system of MW satellites is expected to be a fossil record of the much larger population of Galactic building blocks that once existed and got accreted. For all these reasons, it is crucial to unravel as much of this remaining population as possible, as well as the current stellar streams that orbit within the halo. The best bet to achieve this task is to carry out wide, deep, and multi-band photometric surveys that provide homogeneous stellar samples. In this contribution, we summarize the results of several years of work towards detecting and characterizing distant MW stellar systems, star clusters and dwarf spheroidals alike, with an emphasis on the analysis of data from the Dark Energy Survey (DES). We argue that most of the volume in distance, size and luminosity space, both in the Galaxy and in the Clouds, is still unprobed. We then discuss the perspectives of exploring this outer MW volume using the current surveys, as well as other current and future surveys, such as the Large Synoptic Survey Telescope (LSST).


1999 ◽  
Vol 186 ◽  
pp. 52-52
Author(s):  
E.K. Grebel

Observations at high redshifts are revealing numerous interactions and ongoing mergers. Our own Milky Way is currently merging with the Sagittarius dwarf spheroidal (dSph) galaxy. Past mergers with dwarf galaxies may have contributed significantly to the Galactic halo and possibly to the thick disk. The properties of Local Group dSphs and halo globular clusters impose constraints on the merger history of the Milky Way.


2005 ◽  
Vol 22 (3) ◽  
pp. 190-194 ◽  
Author(s):  
Geraint F. Lewis ◽  
Rodrigo A. Ibata

AbstractCold dark matter cosmologies successfully accounts for the distribution of matter on large scales. On smaller scales, these cosmological models predict that galaxies like our own Milky Way should be enveloped in massive dark matter halos. Furthermore, these halos should be significantly flattened or even triaxial. Recent observational evidence, drawn from the demise of the Sagittarius dwarf galaxy as it is cannibalized by our own, indicates that the potential of the Milky Way must be close to spherical. While the precise interpretation of the observational evidence is under debate, an apparently spherical halo may signify a pronounced failing of dark matter models, and may even indicate a failure in our fundamental understanding of gravity.


2015 ◽  
Vol 11 (S315) ◽  
pp. 9-12
Author(s):  
Felix J. Lockman

AbstractActive gas accretion onto the Milky Way is observed in an object called the Smith Cloud, which contains several million solar masses of neutral and warm ionized gas and is currently losing material to the Milky Way, adding angular momentum to the disk. It is several kpc in size and its tip lies 2 kpc below the Galactic plane. It appears to have no stellar counterpart, but could contain a stellar population like that of the dwarf galaxy Leo P. There are suggestions that its existence and survival require that it be embedded in a dark matter halo of a few 108 solar masses.


2010 ◽  
Vol 6 (S271) ◽  
pp. 145-152
Author(s):  
Anna Curir ◽  
Giuseppe Murante ◽  
Eva Poglio ◽  
Álvaro Villalobos

AbstractThe theory of the Milky Way formation, in the framework of the ΛCDM model, predicts galactic stellar halos to be built from multiple accretion events starting from the first structure to collapse in the Universe.Evidences in the past few decades have indicated that the Galactic halo consists of two overlapping structural components, an inner and an outer halo. We provide a set of numerical N-body simulations aimed to study the formation of the outer Milky Way (MW) stellar halo through accretion events between a (bulgeless) MW-like system and a satellite galaxy. After these minor mergers take place, in several orbital configurations, we analyze the signal left by satellite stars in the rotation velocity distribution. The aim is to explore the orbital conditions of the mergers where a signal of retrograde rotation in the outer part of the halo can be obtained, in order to give a possible explanation of the observed rotational properties of the MW stellar halo.Our results show that the dynamical friction has a fundamental role in assembling the final velocity distributions originated by different orbits and that retrograde satellites moving on low inclination orbits deposit more stars in the outer halo regions and therefore can produce the counter-rotating behavior observed in the outer MW halo.


2016 ◽  
Vol 11 (S321) ◽  
pp. 72-74
Author(s):  
Santi Roca-Fàbrega ◽  
Pedro Colin ◽  
Octavio Valenzuela ◽  
Francesca Figueras ◽  
Yair Krongold

AbstractWe present a new set of cosmological Milky Way size galaxy simulations using ART. In our simulations the main system has been evolved inside a 28 Mpc cosmological box with a spatial resolution of 109 pc. At z=0 our systems have an Mvir = 6 − 8 × 1011 M⊙. In several of out models we have observed how a well defined disk is formed inside the dark matter halo and the overall amount of gas and stars is comparable with MW observations. Several non-axisymmetric structures arise out of the disk: spirals, bars and also a warp. We have also observed that a huge reservoir of hot gas is present at large distances from the disk, embedded in the dark matter halo region, accounting for only a fraction of the ”missing baryons”. Gas column density, emission (EM) and dispersion (DM) measure have been computed from inside the simulated disk at a position of 8 kpc from the center and in several directions. Our preliminary results reveal that the distribution of hot gas is non-isotropic according with observations (Gupta et al. 2012, Gupta et al. 2014). Also its metallic content presents a clear bimodality what is a consequence of a recent accretion of a satellite galaxy among others. After a careful analysis we confirm that due to the anisotropy in the gas distribution a new observational parameter needs to be defined to recover the real distribution of hot gas in the galactic halo (Roca-Fàbrega et al. 2016).


Author(s):  
K. Vieira ◽  
V. Korchagin ◽  
A. Lutsenko

Using GAIA EDR3 catalog, we present the detailed analysis of the two-component Milky Way stellar disk in the solar neighborhood. To determine the kinematical properties of the thin and of the Thick disks, we select the complete sample of about 278,000 evolved red giant branch (RGB) stars distributed in the cylinder of 1 kpc radius and 0.5 kpc height centered at the Sun. We measured the following mean velocities and dispersions for the thin and the Thick disks, respectively: [Formula: see text][Formula: see text]km s[Formula: see text] with [Formula: see text][Formula: see text]km s[Formula: see text], and [Formula: see text][Formula: see text]km s[Formula: see text] with [Formula: see text][Formula: see text]km s[Formula: see text]. Errors in mean velocities and dispersions are all less than 1[Formula: see text]km s[Formula: see text]. Same values were computed on much smaller subsamples of our Gaia data with RAVE DR5 [Fe/H] values, from which a metallicity selection was added. Results are basically the same. We find that up to 500 pc height above/below the galactic plane, Thick disk stars comprise about half the stars of the disk. We also find evidence of a substructure in [Formula: see text] versus [Formula: see text] in the thick disk population mostly that would give support to the accretion scenario for the formation of the thick disk.


2017 ◽  
Vol 13 (S334) ◽  
pp. 189-194
Author(s):  
Lawrence M. Widrow ◽  
Matthew H. Chequers

AbstractRecent observations from SEGUE, RAVE, and LAMOST have revealed tantalizing evidence that the local stellar disk of the Milky Way is in a state of disequilibrium. In particular, the disk appears to exhibit bending and breathing waves normal to its midplane within 2 kiloparsecs of our position within the disk. There also appear to be bending waves or corrugations at larger Galactocentric radii. These waves may be linked to other time-dependent disk phenomena such as the bar, spiral structure, and warp, or they may be the result of a passing dark matter subhalo or dwarf galaxy. Here, we discuss the observational evidence for these waves, the theory of bending and breathing waves in (simulated) stellar disks, and implications of disequilibrium for attempts to determine the local vertical force and dark matter density (the Oort problem). We also discuss the types of analyses that one might do with the Gaia database.


2020 ◽  
Vol 496 (3) ◽  
pp. 2902-2909
Author(s):  
P Molaro ◽  
G Cescutti ◽  
X Fu

ABSTRACT Data from Gaia DR2 and The Apache Point Observatory Galactic Evolution Experiment surveys revealed a relatively new component in the inner Galactic halo, which is likely the dynamical remnant of a disrupted dwarf galaxy named Gaia-Enceladus that collided with the Milky Way about 10 Gyr ago. This merging event offers an extraordinary opportunity to study chemical abundances of elements in a dwarf galaxy, since they are generally hampered in external galaxies. Here, we focus on 7Li and 9Be in dwarf stars that are out of reach even in Local Group galaxies. Searching in GALAH, Gaia-ESO survey and in literature, we found several existing 7Li abundance determinations of stars belonging to the Gaia-Enceladus galaxy. The 7Li abundances of stars at the low metallicity end overlap with those of the Galactic halo. These are effective extragalactic 7Li measurements, which suggest that the 7Li Spite plateau is universal, as is the cosmological 7Li problem. We found a 7Li-rich giant out of 101 stars, which suggests a small percentage similar to that of the Milky Way. We also collect 9Be abundance for a subsample of 25 Gaia-Enceladus stars from literature. Their abundances share the Galactic [Be/H] values at the low metallicity end but grow slower with [Fe/H] and show a reduced dispersion. This suggests that the scatter observed in the Milky Way could reflect the different 9Be evolution patterns of different stellar components that are mixed-up in the Galactic halo.


Sign in / Sign up

Export Citation Format

Share Document