Phytophthora cinnamomi invasion, a major threatening process to conservation of flora diversity in the South-west Botanical Province of Western Australia

2007 ◽  
Vol 55 (3) ◽  
pp. 225 ◽  
Author(s):  
B. L. Shearer ◽  
C. E. Crane ◽  
S. Barrett ◽  
A. Cochrane

The invasive soilborne plant pathogen Phytophthora cinnamomi Rands is a major threatening process in the South-west Botanical Province of Western Australia, an internationally recognised biodiversity hotspot. Comparatively recent introduction of P. cinnamomi into native plant communities of the South-west Botanical Province of Western Australia since the early 1900s has caused great irreversible damage and altered successional change to a wide range of unique, diverse and mainly susceptible plant communities. The cost of P. cinnamomi infestation to community values is illustrated by examination of direct (mortality curves, changes in vegetation cover) and indirect impacts on biodiversity and ecosystem dynamics, the proportion of Threatened Ecological Communities infested, Declared Rare Flora either directly or indirectly threatened by infestation and estimates of the proportion of the native flora of the South-west Botanical Province susceptible to the pathogen. While direct impacts of P. cinnamomi have been poorly documented in the South-west Botanical Province, even less attention has been given to indirect impact where destruction of the habitat by the pathogen affects taxa not directly affected by infection. Current poor understanding and quantification of indirect impacts of P. cinnamomi through habitat destruction results in an underestimation of the true impact of the pathogen on the flora of the South-west Botanical Province. Considerable variation of susceptibility to P. cinnamomi among and within families of threatened flora and responses of taxa within the genus Lambertia show how classification within family and genus are poor predictors of species susceptibility. Within apparently susceptible plant species, individuals are resistant to P. cinnamomi infection. Intra-specific variation in susceptibility can be utilised in the long-term management of threatened flora populations and needs to be a high research priority. Current control strategies for conservation of flora threatened by P. cinnamomi integrate hygiene and ex situ conservation with disease control using fungicide. Application of the fungicide phosphite has proven effective in slowing progress of P. cinnamomi in infested, threatened communities. However, variation in plant species responses to phosphite application is a major factor influencing effective control of P. cinnamomi in native communities. A greater understanding of the mechanisms of action of phosphite in plant species showing different responses to the fungicide may provide options for prescription modification to increase phosphite effectiveness in a range of plant species. The range of responses to P. cinnamomi infection and phosphite application described for Lambertia taxa suggests that the genus would make an ideal model system to elucidate the mechanisms of resistance to P. cinnamomi and the effectiveness of phosphite against the pathogen.

2004 ◽  
Vol 52 (4) ◽  
pp. 435 ◽  
Author(s):  
B. L. Shearer ◽  
C. E. Crane ◽  
A. Cochrane

This study compares, for the first time, variation in estimates of susceptibility of native flora to Phytophthora cinnamomi Rands among four databases and proposes an estimate of the proportion of the flora of the South-West Botanical Province of Western Australia that is susceptible to the pathogen. Estimates of the susceptibility of south-western native flora to P. cinnamomi infection were obtained from databases for Banksia woodland of the Swan Coastal Plain, jarrah (Eucalyptus marginata Donn. ex Smith) forest, the Stirling Range National Park and Rare and Threatened Flora of Western Australia. For the woodland, forest and national park databases, hosts were naturally infected in uncontrolled diverse natural environments. In contrast, threatened flora were artificially inoculated in a shadehouse environment. Considerable variation occurred within taxonomic units, making occurrence within family and genus poor predictors of species susceptibility. Identification of intra-specific resistance suggests that P. cinnamomi could be having a strong selection pressure on some threatened flora at infested sites and the populations could shift to more resistant types. Similar estimates of the proportion of species susceptible to P. cinnamomi among the databases from the wide range of environments suggests that a realistic estimate of species susceptibility to P. cinnamomi infection in the south-western region has been obtained. The mean of 40% susceptible and 14% highly susceptible equates to 2284 and 800 species of the 5710 described plant species in the South-West Botanical Province susceptible and highly susceptible to P. cinnamomi, respectively. Such estimates are important for determining the cost of disease to conservation values and for prioritising disease importance and research priorities. P. cinnamomi in south-western Australia is an unparalleled example of an introduced pathogen with a wide host range causing immense irreversible damage to unique, diverse but mainly susceptible plant communities.


2005 ◽  
Vol 11 (4) ◽  
pp. 287 ◽  
Author(s):  
N. Gibson ◽  
G. J. Keighery ◽  
M. N. Lyons ◽  
B. J. Keighery

The communities of seasonal clay-based wetlands of south-west Australia are described. They are amongst the most threatened In Western Australia. It is estimated that >90% of the original extent of these communities has been cleared for agriculture, and the remaining areas, despite largely occurring in conservation reserves, are threatened by weed invasion and rising saline groundwater. Thirty-six taxa are identified as claypan specialists occurring in six floristic communities. Composition was strongly correlated with rainfall and edaphic factors. The most consistent attribute shared between the seasonal clay-based wetlands of south-west Australia, and the analogous vernal pools systems of California, Chile, and South Africa was the widespread conversion of these wetlands to agricultural systems. The south-west Australia wetlands had a richer flora, different lifeform composition, higher species richness but fewer claypan specialists than the vernal pools of California. The dissimilarity in the regional floras and vegetation types from which the pool floras were recruited explain these differences.


2001 ◽  
Vol 49 (6) ◽  
pp. 761 ◽  
Author(s):  
K. M. Tynan ◽  
C. J. Wilkinson ◽  
J. M. Holmes ◽  
B. Dell ◽  
I. J. Colquhoun ◽  
...  

This study examined the ability of foliar applications of the fungicide phosphite to contain colonisation of Phytophthora cinnamomi in a range of plant species growing in natural plant communities in the northern sandplain and jarrah (Eucalyptus marginata) forest of south-western Australia. Wound inoculation of plant stems with P. cinnamomi was used to determine the efficacy of phosphite over time after application. Colonisation by P. cinnamomi was reduced for 5–24 months after phosphite was applied, depending on the concentration of phosphite used, plant species treated and the time of phosphite application. Plant species within and between plant communities varied considerably in their ability to take up and retain phosphite in inoculated stems and in the in planta concentrations of phosphite required to contain P. cinnamomi. As spray application rates of phosphite increased from 5 to 20 g L–1, stem tissue concentrations increased, as did the ability of a plant species to contain P. cinnamomi. However, at application rates of phosphite above 5 g L–1 phytotoxicity symptoms were obvious in most species, with some plants being killed. So, despite 10 and 20 g L–1 of phosphite being more effective and persistent in controlling P. cinnamomi, these rates are not recommended for application to the plant species studied. The results of this study indicate that foliar application of phosphite has considerable potential in reducing the impact of P. cinnamomi in native plant communities in the short-term. However, in order to maintain adequate control, phosphite should be sprayed every 6–12 months, depending on the species and/or plant community.


2000 ◽  
Vol 48 (6) ◽  
pp. 739 ◽  
Author(s):  
S. R. Turner ◽  
D. H. Touchell ◽  
K. W. Dixon ◽  
B. Tan

Cryostorage of shoot apices of the perennial monocotyledonous species Anigozanthos viridis Endl. ssp. viridis (Haemodoraceae) was investigated by using a modified vitrification protocol. The highest post-thaw survival of shoot apices (41.4%) involved preculturing shoot apices on 0.4 M sorbitol for 48 h followed by incubation in a vitrification cryoprotective solution (PVS2) for 25 min at 0˚C. The level and type of cytokinin used in the culture stage was also found to influence cryostorage success with post-thaw survival decreasing from 41% with zero to low levels of cytokinins to below 5% for cytokinin levels that are typical of plant tissue applications (2.5 ˜M) for Australian plant species. Five Haemodoraceae taxa (Anigozanthos Labill. spp. and Conostylis R.Br. spp.) were successfully cryopreserved with this modified protocol; however, a sixth taxon, Macropidia fuliginosa (Hook.) Druce., remained unresponsive to this vitrification technique.


2006 ◽  
Vol 33 (5) ◽  
pp. 888-900 ◽  
Author(s):  
J. P. Isacch ◽  
C. S. B. Costa ◽  
L. Rodriguez-Gallego ◽  
D. Conde ◽  
M. Escapa ◽  
...  

2007 ◽  
Vol 47 (7) ◽  
pp. 883 ◽  
Author(s):  
Rob Manning ◽  
Kate Lancaster ◽  
April Rutkay ◽  
Linda Eaton

The parasite, Nosema apis, was found to be widespread among feral populations of honey bees (Apis mellifera) in the south-west of Western Australia. The location, month of collection and whether the feral colony was enclosed in an object or exposed to the environment, all affected the presence and severity of infection. There was no significant difference in the probability of infection between managed and feral bees. However, when infected by N. apis, managed bees appeared to have a greater severity of the infection.


Author(s):  
David Worth

Over the past 30 years in Western Australia (WA), there has been heated debate about the future use of the remaining karri and jarrah forests in the south-west of the State. This debate revolves around policy proposals from two social movements: one wants to preserve as much of the remaining old-growth forests as possible, and an opposing movement supports a continued


2003 ◽  
Vol 9 (1) ◽  
pp. 65
Author(s):  
R. S. Watkins

IN 1908, Ron's grandfather, Issac Gray, took up an uncleared block of land 15 km north of Frankland in the south-west of Western Australia (see Fig. 1, Hobbs 2003). During that time he ran a few cattle in the bush and clearing of the native woodlands of Wandoo (white gum) Eucalyptus wandoo, J arrah E. marginata and Marri (Redgum) E. calophylla was slow and tedious. Ron's parents took over the farm in 1947, and with the advent of the bulldozer, clearing of Watkin's property and surrounding district began in earnest during the 1950s. Clearing continued as fast "as money permitted", until almost the last natural vegetation was knocked down in 1978 (Fig. 1). Annual pastures with some cropping (for supplementary feed) were the main source of fodder for sheep and cattle.


Sign in / Sign up

Export Citation Format

Share Document