Where they are, why they are there, and where they are going: using niche models to assess impacts of disturbance on the distribution of three endemic rare subtropical rainforest trees of Macadamia (Proteaceae) species

2014 ◽  
Vol 62 (4) ◽  
pp. 322 ◽  
Author(s):  
M. Powell ◽  
A. Accad ◽  
A. Shapcott

Species within the Macadamia genus (Proteaceae) are rare and threatened narrowly distributed inhabitants of subtropical lowland rainforests of eastern Australia. Despite their strong cultural links and economic importance as a source of germplasm for the macadamia nut industry, a comprehensive assessment of factors contributing to their conservation status, or the potential impacts of climate change, is lacking. We used maximum entropy models to identify the respective niche of the following three Macadamia species with overlapping extant distributions: M. integrifolia, M. ternifolia and M. tetraphylla. We used model predictions to identify and prioritise respective areas of habitat, together with change in geographic distribution of habitats between 1990 and 2070 climates. Results reveal considerable overlap in the geographic extent of habitat among the three species; however, the extent of current occupation of habitat by any individual species is limited. Relatively high levels of clearing of ecological communities strongly associated with M. integrifolia or M. ternifolia have occurred within the extent of their respective habitats, with M. tetraphylla less affected within the Queensland extent of its range. Response to climate change varies among the three species, with a general trend of shift in respective niche to areas that currently experience relatively high precipitation and lower temperature regimes.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Denise C. McGregor ◽  
Amanda Padovan ◽  
Arthur Georges ◽  
Andrew Krockenberger ◽  
Hwan-Jin Yoon ◽  
...  

Abstract The identification and classification of species are essential for effective conservation management. This year, Australia experienced a bushfire season of unprecedented severity, resulting in widespread habitat loss and mortality. As a result, there has been an increased focus on understanding genetic diversity and structure across the range of individual species to protect resilience in the face of climate change. The greater glider (Petauroides volans) is a large, gliding eucalypt folivore. This nocturnal arboreal marsupial has a wide distribution across eastern Australia and is considered the sole extant member of the genus Petauroides. Differences in morphology have led to suggestions that the one accepted species is actually three. This would have substantial impacts on conservation management, particularly given a recent history of declining populations, coupled with extensive wildfires. Until now, genetic evidence to support multiple species has been lacking. For the first time, we used DArT sequencing on greater glider tissue samples from multiple regions and found evidence of three operational taxonomic units (OTUs) representing northern, central and southern groups. The three OTUs were also supported by our morphological data. These findings have important implications for greater glider management and highlight the role of genetics in helping to assess conservation status.


1978 ◽  
Vol 26 (1) ◽  
pp. 45 ◽  
Author(s):  
RH Groves

Established seedlings of three closely related Banksia species (B. ornata, B. serrata and B. serratifolia), with different distributions in southern and eastern Australia, were grown under different day/night temperature regimes in a phytotron for 20 weeks. Results of measurements of shoot elongation and plant productivity show that plants of B. ornata, grown from seed collected in south-eastern South Australia, have a lower temperature optimum for growth than plants of the other two species, which were grown from seed collected at warmer sites in central New South Wales and southern Queensland respectively. This result suggests that in the predominantly winter rainfall areas of southern Australia B. ornata is not necessarily a 'relict' species with a growth pattern typical of a more tropical climate with predominantly summer rainfall.


2011 ◽  
Vol 59 (4) ◽  
pp. 201 ◽  
Author(s):  
Elise Furlan ◽  
J. Griffiths ◽  
N. Gust ◽  
R. Armistead ◽  
P. Mitrovski ◽  
...  

The body size of the platypus (Ornithorhynchus anatinus) is known to vary across both its latitudinal range and relatively short geographic distances. Here we consider how variation in platypus length and weight associates with environmental variables throughout the species’ range. Based on data from over 800 individuals, a Bergmann’s cline (increased body size in regions of lower temperature) was detected across the species latitudinal range. The opposite association, however, was present at smaller scales when comparing platypus body size and temperature within southern mainland Australia, or within an individual river basin. Temperature regimes alone clearly did not dictate body size in platypuses, although disentangling the effects of different climatic variables on body size variation was difficult because of correlations amongst variables. Nevertheless, within suitable platypus habitat in south-eastern Australia, areas of relatively lower rainfall and higher temperatures were typically associated with larger-bodied platypuses. The potential benefits to larger-bodied animals living under these conditions are explored, including consideration of variation in energy expenditure and food availability. Assuming these associations with environmental variables are biologically significant, a shift in platypus body size is anticipated in the future with predicted changes in climate.


2020 ◽  
Author(s):  
Andrew T Smith

Abstract The American pika (Ochotona princeps) is commonly perceived as a species that is at high risk of extinction due to climate change. The purpose of this review is two-fold: to evaluate the claim that climate change is threatening pikas with extinction, and to summarize the conservation status of the American pika. Most American pikas inhabit major cordilleras, such as the Rocky Mountain, Sierra Nevada, and Cascade ranges. Occupancy of potential pika habitat in these ranges is uniformly high and no discernible climate signal has been found that discriminates between the many occupied and relatively few unoccupied sites that have been recently surveyed. Pikas therefore are thriving across most of their range. The story differs in more marginal parts of the species range, primarily across the Great Basin, where a higher percentage of available habitat is unoccupied. A comprehensive review of Great Basin pikas revealed that occupied sites, sites of recent extirpation, and old sites, were regularly found within the same geographic and climatic space as extant sites, and suggested that pikas in the Great Basin tolerated a broader set of habitat and climatic conditions than previously understood. Studies of a small subset of extirpated sites in the Great Basin and in California found that climate variables (most notably measures of hot temperature) were associated more often with extirpated sites than occupied sites. Importantly, upward contraction of the lower elevation boundary also was found at some sites. However, models that incorporated variables other than climate (such as availability of upslope talus habitat) often were better predictors of site persistence. Many extirpations occurred on small habitat patches, which were subject to stochastic extinction, as informed by a long-term pika metapopulation study in Bodie, California. In addition, several sites may have been compromised by cattle grazing or other anthropogenic factors. In contrast, several low, hot sites (Bodie, Mono Craters, Craters of the Moon National Monument and Preserve, Lava Beds National Monument, Columbia River Gorge) retain active pika populations, demonstrating the adaptive capacity and resilience of pikas in response to adverse environmental conditions. Pikas cope with warm temperatures by retreating into cool interstices of their talus habitat and augment their restricted daytime foraging with nocturnal activity. Pikas exhibit significant flexibility in their foraging tactics and are highly selective in their choice of available vegetation. The trait that places pikas at greatest risk from climate change is their poor dispersal capability. Dispersal is more restricted in hotter environments, and isolated low-elevation sites that become extirpated are unlikely to be recolonized in a warming climate. The narrative that American pikas are going extinct appears to be an overreach. Pikas are doing well across most of their range, but there are limited, low-elevation losses that are likely to be permanent in what is currently marginal pika habitat. The resilience of pikas in the face of climate change, and their ability or inability to persist in marginal, hot environments, will continue to contribute to our understanding of the impact of climate change on individual species.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2020 ◽  
Vol 105 (3) ◽  
pp. 281-299
Author(s):  
Javier Carreño-Barrera ◽  
Luis Alberto Núñez-Avellaneda ◽  
Maria José Sanín ◽  
Artur Campos D. Maia

Solitary, dioecious, and mostly endemic to Andean cloud forests, wax palms (Ceroxylon Bonpl. ex DC. spp.) are currently under worrisome conservation status. The establishment of management plans for their dwindling populations rely on detailed biological data, including their reproductive ecology. As in the case of numerous other Neotropical palm taxa, small beetles are assumed to be selective pollinators of wax palms, but their identity and relevance in successful fruit yield were unknown. During three consecutive reproductive seasons we collected data on population phenology and reproductive and floral biology of three syntopic species of wax palms native to the Colombian Andes. We also determined the composition of the associated flower-visiting entomofauna, quantifying the extent of the role of individual species as effective pollinators through standardized value indexes that take into consideration abundance, constancy, and pollen transport efficiency. The studied populations of C. parvifrons (Engel) H. Wendl., C. ventricosum Burret, and C. vogelianum (Engel) H. Wendl. exhibit seasonal reproductive cycles with marked temporal patterns of flower and fruit production. The composition of the associated flower-visiting entomofauna, comprised by ca. 50 morphotypes, was constant across flowering seasons and differed only marginally among species. Nonetheless, a fraction of the insect species associated with pistillate inflorescences actually carried pollen, and calculated pollinator importance indexes demonstrated that one insect species alone, Mystrops rotundula Sharp, accounted for 94%–99% of the effective pollination services for all three species of wax palms. The sequential asynchronous flowering of C. parvifrons, C. ventricosum, and C. vogelianum provides an abundant and constant supply of pollen, pivotal for the maintenance of large populations of their shared pollinators, a cooperative strategy proven effective by high fruit yield rates (up to 79%). Reproductive success might be compromised for all species by the population decline of one of them, as it would tamper with the temporal orchestration of pollen offer.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 251
Author(s):  
Adi Zweifler (Zvifler) ◽  
Michael O’Leary ◽  
Kyle Morgan ◽  
Nicola K. Browne

Increasing evidence suggests that coral reefs exposed to elevated turbidity may be more resilient to climate change impacts and serve as an important conservation hotspot. However, logistical difficulties in studying turbid environments have led to poor representation of these reef types within the scientific literature, with studies using different methods and definitions to characterize turbid reefs. Here we review the geological origins and growth histories of turbid reefs from the Holocene (past), their current ecological and environmental states (present), and their potential responses and resilience to increasing local and global pressures (future). We classify turbid reefs using new descriptors based on their turbidity regime (persistent, fluctuating, transitional) and sources of sediment input (natural versus anthropogenic). Further, by comparing the composition, function and resilience of two of the most studied turbid reefs, Paluma Shoals Reef Complex, Australia (natural turbidity) and Singapore reefs (anthropogenic turbidity), we found them to be two distinct types of turbid reefs with different conservation status. As the geographic range of turbid reefs is expected to increase due to local and global stressors, improving our understanding of their responses to environmental change will be central to global coral reef conservation efforts.


2021 ◽  
Author(s):  
Gabriele Casazza ◽  
Thomas Abeli ◽  
Gianluigi Bacchetta ◽  
Davide Dagnino ◽  
Giuseppe Fenu ◽  
...  

2011 ◽  
Vol 62 (3) ◽  
pp. 223 ◽  
Author(s):  
Allison Aldous ◽  
James Fitzsimons ◽  
Brian Richter ◽  
Leslie Bach

Climate change is expected to have significant impacts on hydrologic regimes and freshwater ecosystems, and yet few basins have adequate numerical models to guide the development of freshwater climate adaptation strategies. Such strategies can build on existing freshwater conservation activities, and incorporate predicted climate change impacts. We illustrate this concept with three case studies. In the Upper Klamath Basin of the western USA, a shift in land management practices would buffer this landscape from a declining snowpack. In the Murray–Darling Basin of south-eastern Australia, identifying the requirements of flood-dependent natural values would better inform the delivery of environmental water in response to reduced runoff and less water. In the Savannah Basin of the south-eastern USA, dam managers are considering technological and engineering upgrades in response to more severe floods and droughts, which would also improve the implementation of recommended environmental flows. Even though the three case studies are in different landscapes, they all contain significant freshwater biodiversity values. These values are threatened by water allocation problems that will be exacerbated by climate change, and yet all provide opportunities for the development of effective climate adaptation strategies.


2021 ◽  
Author(s):  
Giovanni Di Virgilio ◽  
Jason P. Evans ◽  
Alejandro Di Luca ◽  
Michael R. Grose ◽  
Vanessa Round ◽  
...  

<p>Coarse resolution global climate models (GCM) cannot resolve fine-scale drivers of regional climate, which is the scale where climate adaptation decisions are made. Regional climate models (RCMs) generate high-resolution projections by dynamically downscaling GCM outputs. However, evidence of where and when downscaling provides new information about both the current climate (added value, AV) and projected climate change signals, relative to driving data, is lacking. Seasons and locations where CORDEX-Australasia ERA-Interim and GCM-driven RCMs show AV for mean and extreme precipitation and temperature are identified. A new concept is introduced, ‘realised added value’, that identifies where and when RCMs simultaneously add value in the present climate and project a different climate change signal, thus suggesting plausible improvements in future climate projections by RCMs. ERA-Interim-driven RCMs add value to the simulation of summer-time mean precipitation, especially over northern and eastern Australia. GCM-driven RCMs show AV for precipitation over complex orography in south-eastern Australia during winter and widespread AV for mean and extreme minimum temperature during both seasons, especially over coastal and high-altitude areas. RCM projections of decreased winter rainfall over the Australian Alps and decreased summer rainfall over northern Australia are collocated with notable realised added value. Realised added value averaged across models, variables, seasons and statistics is evident across the majority of Australia and shows where plausible improvements in future climate projections are conferred by RCMs. This assessment of varying RCM capabilities to provide realised added value to GCM projections can be applied globally to inform climate adaptation and model development.</p>


Sign in / Sign up

Export Citation Format

Share Document