Thermal reactions of mesityl oxide

1971 ◽  
Vol 24 (5) ◽  
pp. 955 ◽  
Author(s):  
NJ Daly ◽  
MF Gilligan

Mesityl oxide (4-methylpent-3-en-2-one) thermally decomposes in the range 412-490� give methylbutenes, carbon monoxide, isobutene, and methane as major products. The initial 20% of reaction follows first- order kinetics and is described by the equation k1 = 1014.22exp(-63240/RT) s-1. A Rice-Herzfeld chain is proposed. Addition of hydrogen bromide leads to two reactions, one producing isobutene, carbon monoxide, and methyl bromide, and the other leading to polymerization. Likely steps in the polymerization are proposed.

1969 ◽  
Vol 22 (4) ◽  
pp. 713 ◽  
Author(s):  
NJ Daly ◽  
MF Gilligan

In the gas phase, acetic acid reacts with hydrogen bromide in the temperature range 412-492� to give methyl bromide, carbon monoxide, and water. The reaction is first order in each reagent, and the variation of rate constant with temperature is described by the equation �� ����������������� k2 = 1011.67exp(-30400/RT) ml mole-1 sec-1 Possible transition states for the reaction are examined. A mechanism involving an intermediate of the type CH3CO+Br- is possible if the reaction is of the family represented by the hydrogen bromide catalysed decompositions of trimethylacetic, isobutyric, and propionic acids.


2012 ◽  
Vol 77 (2) ◽  
pp. 187-199 ◽  
Author(s):  
Jelena Zvezdanovic ◽  
Dejan Markovic ◽  
Sanja Milenkovic

Stability of Zn(II) and Cu(II) complexes of porphyrin derivatives (pheophytin and mesoporphyrin) to UV-B -irradiation has been studied by absorbance spectroscopy in 95% ethanol. The chosen porphyrins as well as their heavy metal complexes undergo photochemical decomposition obeying first-order kinetics. In general, pheophytin is more stable than mesoporphyrin to UV-B irradiation. On the other hand, stability of Zn(II)-complex is smaller than Cu(II)-complex both for pheophytin and mesoporphyrin; however while Cu(II)-complex with pheophytin is more stable than the one with mesoporphyrin, with Zn(II)-complex the situation is vice versa.


1975 ◽  
Vol 30 (7-8) ◽  
pp. 466-473 ◽  
Author(s):  
Hermann Esterbauer ◽  
Helmward Zöllner ◽  
Norbert Scholz

Abstract 1. GSH reacts with conjugated carbonyls according to the equation: G SH+R-CH=CH-COR⇆R-CH(SG)-CH2-COR. The forward reaction follows second order, the reverse reaction first order kinetics. It is assumed that this reaction reflects best the ability of conjugated carbonyls to inactivate SH groups in biological systems. 2. The rate of forward reaction increases with pH approx. parallel with αSH. Besides OH- ions also proton donors (e. g. buffers) increase the rate. The catalytic effect of pH and buffer is inter­ preted in view of the reaction mechanism. 3. The equilibrium constants as well as the rate constants for forward (k1) and reverse reaction show an extreme variation depending on the carbonyl structure. Acrolein and methyl vinyl ketone (kt = 120 and 32 mol-1 sec-1 , resp.) react more rapidly than any other carbonyl to give very stable adducts (half-lives for reverse reaction 4.6 and 60.7 days, resp.). Somewhat less reactive are 4-hydroxy-2-alkenals and 4-ketopentenoic acid (k1 between 1 and 3 mol-1 sec-1), but they also form very stable adducts showing half-lives between 3.4 and 19 days. All other carbonyl studied react either very slowly (e. g. citral, ethly crotonate, mesityl oxide, acrylic acid) or form very labile adducts (crotonal, pentenal, hexenal, 3-methyl-butenone). Comparing biological activities of con­ jugated carbonyls their reactivity towards HS (k1) and the stability of the adducts must be considered.


1968 ◽  
Vol 21 (7) ◽  
pp. 1711
Author(s):  
DA Kairaitis ◽  
VR Stimson

Hydrogen bromide catalyses the decomposition of methyl formate into carbon monoxide and methanol at 390-460�. The radical chain decomposition product, methane, is formed in only a small amount that is further reduced by the addition of inhibitor. The reaction is homogeneous and molecular, is first order in each reactant, and follows the Arrhenius equation: k2 = 1012.50exp(-32200/RT)sec-1 ml mole-1 It is not reversed by added methanol.


1980 ◽  
Vol 188 (2) ◽  
pp. 467-473 ◽  
Author(s):  
I R Booth ◽  
W A Hamilton

The exit of lactose and thiomethyl-beta-D-galactoside from Escherichia coli ML308-225 has been studied to determine the role of carrier-dependent (zero-trans efflux) and carrier-independent (leak) processes. On the basis of its sensitivity to p-chloromercuribenzene sulphonate the exit of lactose was found to be almost wholly mediated by the carrier. Consistent with this conclusion was the finding that the rate of exit of this sugar was dependent on the external pH, being considerably slower at acid pH. On the other hand exit of thiomethyl-beta-D-galactoside was found to be composed of both carrier-dependent and carrier-independent processes. Both processes exhibited first-order kinetics with the rate constants for zero-trans efflux and leak being 0.137 min-1 and 0.079 min-1, respectively. The relevance of these findings for out earlier proposal for the methods of attenuation of solute accumulation is discussed [Booth, Mitchell & Hamilton (1979) Biochem. J. 182, 687–696].


2017 ◽  
Vol 7 (4) ◽  
pp. 1189-1202
Author(s):  
Zoubeir Bensid

Modeling is an attempt to describe a natural event mathematically.  The modeling of N mineralization process has a dual interest, agronomical and ecological.  The objective of this study is to evaluate several mathematical models to describe the nitrogen mineralization process of soil samples. These samples were collected from 34 sites spatially distributed in the semi-arid region of El-Madher (the Aures area, north-east of Algeria). Using an auger, the systematic surveys have been carried out and composite samples of soils were collected in the field, and subjected to physical and chemical analyzes. In order to track the kinetic organic nitrogen mineralization, similar samples were collected and taken into cool boxes have been incubated in laboratory, sieved (2 mm) and stored at 4°C before use and then incubated at 28°C for 56 weeks. To facilate comparison, all results have been statistically analyzed, by nonlinear regression and analysis of variance method. Four empirical models were tested to fitt the value found experimentally. The linear kinetics model Nm=k t Ni, the single first-order kinetics model (MI) Nm = Ni e-kt + No (1 - e-kt), the double first-order and the exponential kinetics model (MII) Nm=Ni e-kt + No (1 - e-kt) + e-ht and the hyperbolic kinetics model (MH) Nm=NoH.t/(Tc+t) Ni were used to simulate the cumulative mineralized N (NH4+-N and NO3- -N) in the laboratory incubation. In order to test the performance and robustness of the different models three goodness of fit (coefficient of determination R2, Root Mean Square RMS and Mean Relative Error RMSE) were used. Moreover, the parameters obtained by the different models determined the predictions of nitrogen mineralization. The best results were obtained using the double first-order and exponential kinetics model. The results showed no significant difference between nitrogen mineralized for 56 weeks and nitrogen predicted by various models. However, the N predicted by the MII appears to be the best compared to other models. Indeed, the overestimation of nitrogen potentially mineralizable (N0) obtained by this model was relatively lower than other models. This has been confirmed by the study of multiple correlations between net mineral nitrogen and nitrogen predicted by each model. Thus, the results obtained showed a strong positive correlation between mineralized nitrogen values and those of nitrogen predicted by the different models. The correlation coefficients values indicate the folowing order MII (r = 0.878)> MI (r = 0.748)> MH (r = 0.709). The MII model has, therefore, highlighted that two pools of organic matter that mineralize simultaneously were detected in soil. One pool is stable and the other one is labile. One pool evolves with first-order kinetics and the other with exponential kinetics.


1985 ◽  
Vol 53 (3) ◽  
pp. 663-671 ◽  
Author(s):  
M. S. Dhanoa ◽  
R. C. Siddons ◽  
J. France ◽  
D. L. Gale

1. A multicornpartmental model, which assumes first-order kinetics, is proposed to describe digesta flow along the gastrointestinal tract of ruminants.2. Solution of the model yields a multiplicative equation, containing a single-exponential term and a double-exponential term, for describing faecal outflow rate.3. The logarithmic transformation of the equation was fitted to eighty-two excretion curves obtained after the administration of marker into the rumen of cattle and sheep, and compared with other published models.4. It was found to be superior to the other models in that it fitted all the data sets successfully.


1970 ◽  
Vol 23 (3) ◽  
pp. 525 ◽  
Author(s):  
BS Lennon ◽  
VR Stimson

Trimethylacetyl bromide decomposes at 298-364� into isobutene, carbon monoxide, and hydrogen bromide in a first-order manner with rate given by k1 = 138 x 1014exp(-48920/RT) sec-1 The rate is unaffected by addition of the products or of inhibitors, or by increase of the surface/volume ratio of the reaction vessel. The likely radical chain mechanism is considered and rejected. The reaction is believed to be a molecular one, and possible cyclic and polar transition states are discussed.


1977 ◽  
Vol 55 (22) ◽  
pp. 3951-3954 ◽  
Author(s):  
Robert J. Crawford ◽  
Stuart Lutener ◽  
Hirokazu Tokunaga

The thermal decarbonylation of 2,2-dimethyl-3-butenal is shown to be an intramolecular extrusion of carbon monoxide concerted with the transfer of hydrogen (deuterium) to the γ-position. The reaction displays a kinetic isotope effect of 2.8 (at 296.9 °C) and follows first order kinetics (Ea = 44.2 ± 0.2 kcal mol−1, log A = 13.4 ± 0.3).


1984 ◽  
Vol 221 (2) ◽  
pp. 529-533 ◽  
Author(s):  
N Sone ◽  
A Naqui ◽  
C Kumar ◽  
B Chance

Reaction of O2 and CO with a caa3-type terminal cytochrome oxidase (EC 1.9.3.1) from the thermophilic bacterium PS3 grown with high aeration was studied at low temperatures. The CO recombination at the temperature range studied (−50 degrees C to −80 degrees C) followed first-order kinetics with an activation energy of 29.3 kJ/mol (7.0 kcal/mol). In the presence of O2 at −113 degrees C the photolysed reduced form binds O2 to form an ‘oxy’ intermediate similar to Compound A. At a higher temperature (-97 degrees C) another intermediate, similar to Compound B, is formed as a result of electron transfer from the enzyme to the liganded O2.


Sign in / Sign up

Export Citation Format

Share Document