A fluorochrome from aniline blue: structure,synthesis and fluorescence properties

1982 ◽  
Vol 35 (12) ◽  
pp. 2571 ◽  
Author(s):  
NA Evans ◽  
PA Hoyne

A fluorochrome has been isolated in analytically pure form from a commercial sample of the triaryl-methane dye aniline blue. Its structure has been shown to be sodium 4,4'-[carbonylbis(benzene-4,1-diyl)bis(imino)]bisbenzenesulfonate by spectroscopic means and confirmed by synthesis. Its fluorescence emission, which is markedly solvent-dependent, is 150 times greater in butan-1-ol than in water (however, the wavelength of the emission maximum is not altered significantly). In the presence of a cationic surfactant, hexadecyltrimethylammonium bromide, the fluorescence intensity reaches a maximum at approximately the critical micelle concentration of the surfactant.

1989 ◽  
Vol 259 (3) ◽  
pp. 799-804 ◽  
Author(s):  
R S Mani ◽  
C M Kay

The 67 kDa calcimedin, isolated by using a phenyl-Sepharose affinity column followed by DEAE-cellulose and gel-filtration chromatographies, was homogeneous by the criterion of SDS/polyacrylamide-gel electrophoresis. In non-SDS gels, the protein moved faster in the presence of EDTA, suggesting that Ca2+ binding affects its mobility in a manner similar to other Ca2+-binding proteins such as calmodulin and S-100 proteins. The 67 kDa protein underwent a conformational change upon binding Ca2+, as revealed by u.v. difference spectroscopy and near-u.v. c.d. measurements. Tryptophan and tyrosine residues were perturbed upon Ca2+ binding, moving to a more non-polar environment in the presence of Ca2+. Upon excitation of the protein at 280 nm, the fluorescence emission maximum was centered around 325 nm, suggesting that the tryptophan residues are located in a fairly hydrophobic region. Ca2+ addition did not induce a significant change in the intrinsic protein fluorescence intensity at 325 nm. Addition of Ca2+ to the 67 kDa protein labelled with 2-p-toluidinylnaphthalene-6-sulphone (TNS) resulted in a 25% increase in fluorescence intensity, accompanied by a blue shift of the emission maximum from 442 to 432 nm. Hence, the probe in the presence of Ca2+ moves to a more non-polar microenvironment, like calmodulin and other Ca2+-binding proteins. Fluorescence titration with Ca2+ using TNS-labelled protein revealed one class of binding site, with a Kd value of 2 x 10(-5) M.


1991 ◽  
Vol 276 (1) ◽  
pp. 13-18 ◽  
Author(s):  
H Donato ◽  
R S Mani ◽  
C M Kay

The effect of Cd2+ binding on bovine brain S-100b protein was studied using c.d. u.v. difference spectroscopy and fluorescence measurements. At pH 7.5, S-100b protein binds two Cd2+ ions per monomer with a Kd value of 3 x 10(-5) M. Addition of Cd2+ resulted in perturbing the single tyrosine residue (Tyr17) in the protein as indicated by u.v. difference spectroscopy and aromatic c.d. measurements. In the presence of Cd2+, the tyrosine residue moves to a more non-polar environment, since a red shift was observed in the u.v. difference spectrum. When the protein was excited at 278 nm, the tyrosine fluorescence emission maximum was centred at 306 nm. Cd2+ addition resulted in an increase in intrinsic fluorescence intensity. Fluorescence titration with Cd2+ indicated the protein binds Cd2+ with a Kd value of 3 x 10(-5) M. 2-p-Toluidinylnaphthalene-6-sulphonate-labelled protein, when excited at 345 nm, had a fluorescence emission maximum at 440 nm. Addition of Cd2+ to labelled protein resulted in a 5-fold increase in fluorescence intensity accompanied by a 5 nm blue shift in the emission maximum, suggesting that the probe, in the presence of Cd2+, moves to a hydrophobic domain. U.v. difference spectroscopic studies indicated a unique Cd2(+)-binding site on the protein, since Cd2+ addition yielded a large positive absorption band in the 240 nm region that is not found with either Ca2+ or Zn2- ions. Similar absorption bands have been observed in Cd-protein complexes such as Cd-metallothionein [Vasak, Kagi & Hill (1981) Biochemistry 20, 2852-2856] and also in model complexes of Cd2+ with 2-mercaptoethanol. This absorption band is believed to arise as a result of charge-transfer transitions between the thiolate and Cd2+. Of the two Cd2- -binding sites on the beta-chain, one must be located at the N-terminal end near the single tyrosine residue, since Cd2- and Zn2+ produced similar effects on the intrinsic protein fluorescence. The other Cd2+ site which is unique to Cd2+ must be Cys84, located at the C-terminal end.


1978 ◽  
Vol 26 (4) ◽  
pp. 277-283 ◽  
Author(s):  
K Schauenstein ◽  
E Schauenstein ◽  
G Wick

Excitation and emission properties of fluorescein derivatives were studied macrofluorometrically. Measurements were performed with solutions of various concentrations (0.07-100 microgram/ml) of free sodium fluorescein prepared from fluorescein diacetate (FDA), fluorescein isothiocyanate (FITC) and FITC bound to rabbit gamma-globulin. Both excitation and emission spectra as well as fluorescence intensities at constant excitation/emission wavelengths (496/515 nm) were recorded. The findings indicate that (1) FDA gives about twice the fluorescence intensity compared to equal concentrations of FITC. (2) The fluorescence properties of FITC upon excitation with blue light (lambda = 496 nm) are only slightly altered by the conjugation to rabbit gamma-globulin. (3) Considerable quenching due to conjugation could, however, be shown to occur upon UV excitation (lambda = 340 nm). (4) Fluorescence emission excited by visible blue light (496 nm) increases linearly to dye concentration in a range of 0.07-2.5 microgram/ml. Beginning at 5 microgram/ml (10-(5) M/1) all three compounds show a sharp decrease of fluorescence intensity with further increasing concentration. Practical aspects of these data for the immunofluorescence method are discussed.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242464
Author(s):  
Carolin Peter ◽  
Silke Thoms ◽  
Florian Koch ◽  
Franz Josef Sartoris ◽  
Ulf Bickmeyer

In several marine hosts of microalgae, fluorescent natural products may play an important role. While the ecological function of these compounds is not well understood, an interaction of these molecules with the photosynthesis of the symbionts has been suggested. In this study, the effect of Ageladine A (Ag A), a pH-dependent fluorophore found in sponges of the genus Agelas, on microalgal fluorescence was examined. The spectra showed an accumulation of Ag A within the cells, but with variable impacts on fluorescence. While in two Synechococcus strains, fluorescence of phycoerythrin increased significantly, the fluorescence of other Synechococcus strains was not affected. In four out of the five eukaryote species examined, chlorophyll a (Chl a) fluorescence intensity was modulated. In Tisochrysis lutea, for example, the position of the fluorescence emission maximum of Chl a was shifted. The variety of these effects of Ag A on microalgal fluorescence suggests that fluorophores derived from animals could play a crucial role in shaping the composition of marine host/symbiont systems.


2013 ◽  
Vol 634-638 ◽  
pp. 2462-2465
Author(s):  
Wen Xian Li ◽  
Bo Yang Ao ◽  
Jing Zhang

A novel ligand with double sulfinyl groups, bis(benzylsulfinyl)methane L, was synthesized by a new method. Its novel ternary complex, has been synthesized [using L as the first ligand, and dipyridyl L' as the second ligand]. In order to study the effect of the second ligand on the fluorescence properties of rare-earth sulfoxide complex, a novel binary europium complex has been synthesized. Photoluminescent measurement showed that the first ligand L could efficiently transfer the energy to Eu (III) ions in the complex. Furthermore, the detailed luminescence analyses on the rare earth complexes indicated that the ternary Eu (III) complex manifested stronger fluorescence intensities, longer lifetimes, and higher fluorescence quantum efficiencies than the binary Eu (III) materials. The fluorescence emission intensities and fluorescence lifetimes of the ternary complex enhanced more obviously than the binary complex.


Langmuir ◽  
2004 ◽  
Vol 20 (20) ◽  
pp. 8740-8753 ◽  
Author(s):  
Richard A. Campbell ◽  
Stephen R. W. Parker ◽  
James P. R. Day ◽  
Colin D. Bain

NANO ◽  
2020 ◽  
Vol 15 (05) ◽  
pp. 2050063
Author(s):  
Zhifeng Cai ◽  
Xiu Yin ◽  
Jingling Fang ◽  
Jie Zhao ◽  
Tianqi Wu ◽  
...  

In this contribution, a one-pot synthesis method possessing the advantages of simple, green and low-cost had been researched for the preparation of L-histidine-stabilized Cu nanoclusters (Cu NCs). Subsequently, the structure and optical properties of as-prepared Cu NCs were studied by using Fourier transform infrared (FTIR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), fluorescence spectroscopy and UV-Vis absorption spectroscopy. TEM image of the Cu NCs showed high dispersion with an average diameter of 2.0[Formula: see text]nm. Fluorescence spectrum displayed that the Cu NCs emitted green fluorescence (emission wavelength of 492[Formula: see text]nm) under excitation wavelength of 393[Formula: see text]nm. Moreover, the as-synthesized Cu NCs illustrated excellent performances, such as good water solubility, UV stability and high-salt resistance. Interestingly, the fluorescence intensity of as-prepared Cu NCs was obviously quenched in the presence of fluazinam. Under optimal conditions, the relative fluorescence intensity was linear with the fluazinam concentrations from 1 to 40[Formula: see text][Formula: see text]M, with a detection limit of 0.25[Formula: see text][Formula: see text]M. Eventually, the fluorescence sensor was successfully used to determine fluazinam in real water samples.


1993 ◽  
Vol 48 (5-6) ◽  
pp. 709-712 ◽  
Author(s):  
Stefan H. Hüttenhain ◽  
Wolfgang Balzer

Abstract The correlation of the solvatochromic fluorescence properties of 8-(phenylamino)-1-naphthalene-ammoniumsulfonate (8,1 ANS) in 1,4-dioxane/water mixtures with Eτ(30) and Δƒ values of the respective solvents shows that besides the polarity the nature of the solvent mixture determines the fluorescence intensity I and the Stokes shift Δv̅. Different amounts of hydrogen-bonding are suggested to be responsible for the different slopes of the correlation line plots. Key words: Solvatochromic fluorescence 8-(phenylamino)-1-naphthalene-ammoniumsulfonate (8,1 ANS); Semi-empiric polarity parameters 1,4-dioxane/water mixtures.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1555
Author(s):  
Wataru Michida ◽  
Anna Nagai ◽  
Mina Sakuragi ◽  
Tadashi Okobira ◽  
Katsuki Kusakabe

Aggregation-induced emission (AIE) molecules are nonemissive in dilute solution but emit intensely upon aggregation in complete contrast to aggregation-caused quenching (ACQ) molecules. The emission of ACQ molecules, such as fluorescein, that have been encapsulated into the hydrophilic nanopores in a cyclodextrin-based metal-organic framework (CD-MOF) was reported to be enhanced due to the disappearance of concentration quenching and the restriction of thermal motion. However, the contribution of the restriction of thermal motion in CD-MOF could not be elucidated. In this study, an AIE-active L-cysteine/Au(I) (L-Cys/Au(I)) complex was synthesized and introduced into the nanopores of CD-MOF via a co-crystallization method. We determined the amount and chemical composition of the L-Cys/Au(I) complex in CD-MOF. The fluorescence intensity of the L-Cys/Au(I)@CD-MOF composite was investigated. The L-Cys/Au(I) complex that was synthesized from Au(III) chloride and L-cysteine was found to be a linear oligomer consisting of Cys5Au4. For the L-Cys/Au(I)@CD-MOF composite with a L-Cys/Au(I) complex of 0.45 per hydrophilic nanopore, the total fluorescence intensity of the isolated L-Cys/Au(I) complex in CD-MOF exceeded that of the L-Cys/Au(I) complex in the solid-state due to the restriction of the thermal motion without the aggregation of the complex.


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Dingjun Zhang ◽  
Wenjin Zhao ◽  
Zhaoxuan Feng ◽  
Youzhi Wu ◽  
Caixia Huo ◽  
...  

AbstractIn this study, the salicylaldehyde hydrazone was bonded onto the side chains of poly (styrene-co-butyl acrylate), firstly obtaining a series of novel Schiff base-functionalized polymers. and using the base-containing polymers as macromolecular ligands through further reaction with EuCl3/YbCl3·6H2O, a series of polymer-rare earth complexes based on Eu(III)/Yb(III) ion were successfully prepared. The structures of the schiff base-containing polymers and their corresponding complexes were characterized by means of infrared spectra and UV spectra. The thermal properties of the functionalized polymers and complexes were investigated by TGA, and the fluorescence properties of the complexes were also researched by fluorescence spectrum. The experimental results show that the complexes have fine thermal stability likely because of the bidentate chelate effect of base-containing polymer and the conjugative effect of salicylaldehyde hydrazone group on the side chain of poly (styrene-co-butyl acrylate). More important, the salicylaldehyde hydrazone group on the side chains of poly(styrene-co-butyl acrylate) can efficaciously sensitize the fluorescence emission of the center ion due to effective intramolecular energy transfer. All the Eu(III)/Yb(III) complexes exhibit characteristic photoluminescence peaks in the visible region. The fluorescence excitation spectra of the complexes were obtained by monitoring the emission of Eu3+/Yb3+ ion at 497 nm, and the peak at 433 nm was found to be the optimal excitation peak. The concentration of salicylaldehyde hydrazone group was changed gradually with the variation of the molar ratio between the butyl acrylate and styrene (1:0.5; 1:1; 1:1.5; 1:2; 1:2.5), and the differences in their fluorescent intensity were followed, and the fluorescence intensity was very weak when the molar ratio of the butyl acrylate to styrene is equal to 1:2.5, while the fluorescence intensity reached a maximum value in the molar ratio of 1:1.


Sign in / Sign up

Export Citation Format

Share Document