Advances in precision agriculture in south-eastern Australia. I. A regression methodology to simulate spatial variation in cereal yields using farmers' historical paddock yields and normalised difference vegetation index

2009 ◽  
Vol 60 (9) ◽  
pp. 844 ◽  
Author(s):  
P. D. Fisher ◽  
M. Abuzar ◽  
M. A. Rab ◽  
F. Best ◽  
S. Chandra

Despite considerable interest by Australian farmers in precision agriculture (PA), its uptake has been low. Analysis of the possible financial benefits of alternative management options that are based on the underlying patterns of observed spatial and temporal yield variability in a paddock could increase farmer confidence in adopting PA. The cost and difficulty in collecting harvester yield maps have meant that spatial yield data are generally not available in Australia. This study proposes a simple, economical and easy to use approach to generate simulated yield maps by using paddock-specific relationships between satellite normalised difference vegetation index (NDVI) and the farmer’s average paddock yield records. The concept behind the approach is illustrated using a limited dataset. For each of 12 paddocks in a property where a farmer’s paddock-level yield data were available for 3–5 years, the paddock-level yields showed a close to linear relationship with paddock-level NDVI across seasons. This estimated linear relationship for each paddock was used to simulate mean yields for the paddock at the subpaddock level at which NDVI data were available. For one paddock of 167 ha, for which 4 years of harvester yield data and 6 years of NDVI data were available, the map of simulated mean yield was compared with the map of harvester mean yield. The difference between the two maps, expressed as percentage deviation from the observed mean yield, was <20% for 63% of the paddock and <40% for 78% of the paddock area. For 3 seasons when there were both harvester yield data and NDVI data, the individual season simulated yields were within 30% of the observed yields for over 70% of the paddock area in 2 of the seasons, which is comparable with spatial crop modelling results reported elsewhere. For the third season, simulated yields were within 30% of the observed yield in only 22% of the paddock, but poor seasonal conditions meant that 40% of the paddock yielded <100 kg/ha. To illustrate the type of financial analysis of alternative management options that could be undertaken using the simulated yield data, a simple economic analysis comparing uniform v. variable rate nitrogen fertiliser is reported. This indicated that the benefits of using variable rate technology varied considerably between paddocks, depending on the degree of spatial yield variability. The proposed simulated yield mapping requires greater validation with larger datasets and a wider range of sites, but potentially offers growers and land managers a rapid and cost-effective tool for the initial estimation of subpaddock yield variability. Such maps could provide growers with the information necessary to carry out on-farm testing of the potential benefits of using variable applications of agronomic inputs, and to evaluate the financial benefits of greater investment in PA technology.

2018 ◽  
pp. 99 ◽  
Author(s):  
V. Egea-Cobrero ◽  
V. Rodriguez-Galiano ◽  
E. Sánchez-Rodríguez ◽  
M.A. García-Pérez

<p>There is a relationship between net primary production of wheat and vegetation indices obtained from satellite imaging. Most wheat production studies use the Normalised Difference Vegetation Index (NDVI) to estimate the production and yield of wheat and other crops. On the one hand, few studies use the MERIS Terrestrial Chlorophyll Index (MTCI) to determine crop yield and production on a regional level. This is possibly due to a lack of continuity of MERIS. On the other hand, the emergence of Sentinel 2 open new possibilities for the research and application of MTCI. This study has built two empirical models to estimate wheat production and yield in Andalusia. To this end, the study used the complete times series (weekly images from 2006–2011) of the MTCI vegetation index from the Medium Resolution Imaging Spectrometer (MERIS) sensor associated with the Andalusian yearbook for agricultural and fishing statistics (AEAP—Anuario de estadísticas agrarias y pesqueras de Andalucía). In order to build these models, the optimal development period for the plant needed to be identified, as did the time-based aggregation of MTCI values using said optimal period as a reference, and relation with the index, with direct observations of production and yield through spatial aggregation using coverage from the Geographic Information System for Agricultural Parcels (SIGPAC—Sistema de información geográfica de parcelas agrícolas) and requests for common agricultural policy (CAP) assistance. The obtained results indicate a significant association between the MTCI index and the production and yield data collected by AEAP at the 95% confidence level (R<sup>2</sup> =0.81 and R<sup>2</sup> =0.57, respectively).</p>


2017 ◽  
Vol 79 ◽  
pp. 223-227
Author(s):  
K. Wigley ◽  
J.L. Owens ◽  
J.A.K. Trethewey ◽  
D.C. Ekanayake ◽  
R.L. Roten ◽  
...  

Reducing the amount of nitrogen (N) fertiliser applied to dairy pastures down to agronomically optimised levels would have positive economic and environmental results. The ability of commercially available optical sensors to estimate biomass yield and foliar-N uptake in pastures was investigated. Vegetative indices (Simple Ratio, SR; Water Index, WI; and Normalised Difference Vegetation Index, NDVI) from two active optical reflectance sensors (N-Sensor, Yara; and Greenseeker, Trimble) were compared with manually measured biomass and N-uptake in above-ground foliage. There were three measurements over time, from pastures that had received different N fertiliser applications rates (0, 10, 20, 40 and 80 kg N/ha). It was found that the sensors were able to detect differences in biomass and foliar N-uptake following defoliation of grazed pastures. The tested optical sensors have the potential to inform a real-time variable rate fertiliser application system. Keywords: pasture, nitrogen, optical sensors


2013 ◽  
Vol 4 (2) ◽  
pp. 385-407 ◽  
Author(s):  
M. Lindeskog ◽  
A. Arneth ◽  
A. Bondeau ◽  
K. Waha ◽  
J. Seaquist ◽  
...  

Abstract. Dynamic global vegetation models (DGVMs) are important tools for modelling impacts of global change on ecosystem services. However, most models do not take full account of human land management and land use and land cover changes (LULCCs). We integrated croplands and pasture and their management and natural vegetation recovery and succession following cropland abandonment into the LPJ-GUESS DGVM. The revised model was applied to Africa as a case study to investigate the implications of accounting for land use on net ecosystem carbon balance (NECB) and the skill of the model in describing agricultural production and reproducing trends and patterns in vegetation structure and function. The seasonality of modelled monthly fraction of absorbed photosynthetically active radiation (FPAR) was shown to agree well with satellite-inferred normalised difference vegetation index (NDVI). In regions with a large proportion of cropland, the managed land addition improved the FPAR vs. NDVI fit significantly. Modelled 1991–1995 average yields for the seven most important African crops, representing potential optimal yields limited only by climate forcings, were generally higher than reported FAO yields by a factor of 2–6, similar to previous yield gap estimates. Modelled inter-annual yield variations during 1971–2005 generally agreed well with FAO statistics, especially in regions with pronounced climate seasonality. Modelled land–atmosphere carbon fluxes for Africa associated with land use change (0.07 PgC yr−1 release to the atmosphere for the 1980s) agreed well with previous estimates. Cropland management options (residue removal, grass as cover crop) were shown to be important to the land–atmosphere carbon flux for the 20th century.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 645
Author(s):  
S. Hamed Javadi ◽  
Angela Guerrero ◽  
Abdul M. Mouazen

In precision agriculture (PA) practices, the accurate delineation of management zones (MZs), with each zone having similar characteristics, is essential for map-based variable rate application of farming inputs. However, there is no consensus on an optimal clustering algorithm and the input data format. In this paper, we evaluated the performances of five clustering algorithms including k-means, fuzzy C-means (FCM), hierarchical, mean shift, and density-based spatial clustering of applications with noise (DBSCAN) in different scenarios and assessed the impacts of input data format and feature selection on MZ delineation quality. We used key soil fertility attributes (moisture content (MC), organic carbon (OC), calcium (Ca), cation exchange capacity (CEC), exchangeable potassium (K), magnesium (Mg), sodium (Na), exchangeable phosphorous (P), and pH) collected with an online visible and near-infrared (vis-NIR) spectrometer along with Sentinel2 and yield data of five commercial fields in Belgium. We demonstrated that k-means is the optimal clustering method for MZ delineation, and the input data should be normalized (range normalization). Feature selection was also shown to be positively effective. Furthermore, we proposed an algorithm based on DBSCAN for smoothing the MZs maps to allow smooth actuating during variable rate application by agricultural machinery. Finally, the whole process of MZ delineation was integrated in a clustering and smoothing pipeline (CaSP), which automatically performs the following steps sequentially: (1) range normalization, (2) feature selection based on cross-correlation analysis, (3) k-means clustering, and (4) smoothing. It is recommended to adopt the developed platform for automatic MZ delineation for variable rate applications of farming inputs.


Sensor Review ◽  
2017 ◽  
Vol 37 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Robert Bogue

Purpose This study aims to illustrate the growing role that sensors play in agriculture, with an emphasis on precision agricultural practices. Design/methodology/approach Following a short introduction, this study first provides an overview of agricultural measurements and applications. It then discusses the importance of airborne and land-based optical sensing techniques and the role of the normalised difference vegetation index. Sensors used on conventional and robotic agricultural machines are considered next, and fixed sensors and sensor networks are then discussed. Finally, brief concluding comments are drawn. Findings This shows that much modern agriculture is a high-technology business which relies on a multitude of sensor-based measurements. Sensors are based on a diversity of optical and other technologies and measure a wide range of physical and chemical variables. They are deployed in the air, on agricultural machines and in the field and generate data that can be used to enhance productivity and reduce both costs and the impact on the environment. Originality/value This provides a detailed insight into the important role played by sensors in modern agricultural practices.


2020 ◽  
Author(s):  
Calogero Schillaci ◽  
Edoardo Tomasoni ◽  
Marco Acutis ◽  
Alessia Perego

&lt;p&gt;To improve nitrogen fertilization is well known that vegetation indices can offer a picture of the nutritional status of the crop. In this study, field management information (maize sowing and harvesting dates, tillage, fertilization) and estimated vegetation indices VI (Sentinel 2 derived Leaf Area Index LAI, Normalized Difference Vegetation Index NDVI, Fraction of Photosynthetic radiation fPAR) were analysed to develop a batch-mode VIs routine to manage high dimensional temporal and spatial data for Decision Support Systems DSS in precision agriculture, and to optimize the maize N fertilization in the field. The study was carried out in maize (2017-2018) on a farm located in Mantua (northern Italy); the soil is a Vertic Calciustepts with a fine silty texture with moderate content of carbonates. A collection of Sentinel 2 images (with &lt;25% cloud cover) were processed using Graph Processing Tool (GPT). This tool is used through the console to execute Sentinel Application Platform (SNAP) raster data operators in batch-mode. The workflow applied on the Sentinel images consisted in: resampling each band to 10m pixel size, splitting data into subsets according to the farm boundaries using Region of Interest (ROI). Biophysical Operator based on Biophysical Toolbox was used to derive LAI, fPAR for the estimation of maize vegetation indices from emergence until senescence. Yield data were acquired with a volumetric yield sensing in a combine harvester. Fertilization plans were then calculated for each field prior to the side-dressing fertilization. The routine is meant as a user-friendly tool to obtain time series of assimilated VIs of middle and high spatial resolution for field crop fertilization. It also overcomes the failures of the open source graphic user interface of SNAP. For the year 2018, yield data were related to the 34 LAI derived from Sentinel 2a products at 10 m spatial resolution (R&lt;sup&gt;2&lt;/sup&gt;=0.42). This result underlined a trend that can be further studied to define a cluster strategy based on soil properties. As a further step, we will test whether spatial differences in assimilated VIs, integrated with yield data, can guide the nitrogen top-dress fertilization in quantitative way more accurately than a single image or a collection of single images.&lt;/p&gt;


Author(s):  
S. A. Suab ◽  
M. S. Syukur ◽  
R. Avtar ◽  
A. Korom

Abstract. Malaysia currently is one of the biggest global producers and exporters of palm oil. The world’s expanding oil palm plantation areas contribute to climate change and in-return, climate is change also affecting the health of oil palms through a range of abiotic and biotic stresses. Current advancements in Precision Agriculture research using UAV gives an advantage to detect the health conditions of oil palm at early stages. Thus, remedial actions can be taken to prolong the life and increase oil palms productivity. This paper explores the use of UAV derived NDVI and CPA of young oil palm to detect the health conditions. NDVI of individual oil palm were extracted using ground masking layer from the dense point clouds and visual on-screen manual editing was done for removing trees other than oil palm in ENVI software. The classified individual crown NDVI were then processed to extract the mean NDVI also conversion to vector to obtain the individual crown outline. Extracted mean NDVI was classified into un-healthy and healthy trees while the CPA was classified into small, medium and big size classes. These classes of NDVI and CPA were analysed using GIS overlay method thus revealing the spatial patterns of individual oil palm trees and its health conditions. Overall, the majority of oil palm trees of the study area are healthy but average performing. However, few oil palm trees detected having health problems which has low NDVI and small CPA. This study demonstrates that biophysical parameters such as the CPA can be used to detect individual young oil palm trees health conditions and problems when combined with vegetation indices such as NDVI.


2019 ◽  
pp. 33-40 ◽  
Author(s):  
Kathryn Wigley ◽  
Jennifer L. Owens ◽  
Matthias Westerschulte ◽  
Paul Riding ◽  
Jaco Fourie ◽  
...  

New tools are required to provide estimates of pasture biomass as current methods are time consuming and labour intensive. This proof-of-concept study tested the suitability of photogrammetry to estimate pasture height in a grazed dairy pasture. Images were obtained using a digital camera from one site on two separate occasions (May and June 2017). Photogrammetry-derived pasture height was estimated from digital surface models created using the photos. Pasture indices were also measured using two currently available methods: a Rising Plate Meter (RPM), and Normalised Difference Vegetation Index (NDVI). Empirical pasture biomass measurements were taken using destructive sampling after all other measurements were made, and were used to evaluate the accuracy of the estimates from each method. There was a strong linear relationship between photogrammetry-derived plant height and actual biomass (R2=0.92May and 0.78June) and between RPM and actual biomass (R2=0.91May and 0.78June). The relationship between NDVI and actual biomass was relatively weaker (R2=0.65May and 0.66June). Photogrammetry could be an efficient way to measure pasture biomass with an accuracy comparable to that of the RPM but further work is required to confirm these preliminary findings.


2013 ◽  
Vol 4 (1) ◽  
pp. 235-278 ◽  
Author(s):  
M. Lindeskog ◽  
A. Arneth ◽  
A. Bondeau ◽  
K. Waha ◽  
J. Seaquist ◽  
...  

Abstract. Dynamic global vegetation models (DGVMs) are important tools for modelling impacts of global change on ecosystem services. However, current models often do not take full account of human land management and land use and land cover changes (LULCC). We integrated croplands and their management and natural vegetation recovery and succession following land use abandonment into the LPJ-GUESS DGVM. The revised model was applied to Africa as a case study to investigate the implications of accounting for land use on agricultural production, net ecosystem carbon balance (NECB) and on the general skill of the model in reproducing trends and patterns in vegetation structure and function. The seasonality of modelled monthly fraction of absorbed photosynthetically active radiation (FPAR) was shown to agree well with satellite-inferred normalised difference vegetation index (NDVI). In regions with a large proportion of cropland, the managed land addition improved the FPAR vs. NDVI fit significantly. Modelled 1991–1995 average yields for the seven most important African crops, representing potential optimal yields limited only by climate forcings, were generally higher than reported FAO yields by a factor of 2–6, similar to previous yield gap estimates. Modelled inter-annual yield variations during 1971–2005 generally agreed well with FAO statistics, especially in regions with pronounced climate seasonality. Modelled land-atmosphere carbon fluxes for Africa associated with land use change (0.09 PgC yr−1 release to the atmosphere for the 1980s) agreed well with previous estimates. Cropland management options (residue removal, grass as cover crop) were shown to be of similar importance to the land-atmosphere carbon flux as land use change for the 20th century.


Sign in / Sign up

Export Citation Format

Share Document