Advances in precision agriculture in south-eastern Australia. II. Spatio-temporal prediction of crop yield using terrain derivatives and proximally sensed data

2009 ◽  
Vol 60 (9) ◽  
pp. 859 ◽  
Author(s):  
N. J. Robinson ◽  
P. C. Rampant ◽  
A. P. L. Callinan ◽  
M. A. Rab ◽  
P. D. Fisher

The effects of seasonal as well as spatial variability in yield maps for precision farming are poorly understood, and as a consequence may lead to low predictability of future crop yield. The potential to utilise terrain derivatives and proximally sensed datasets to improve this situation was explored. Yield data for four seasons between 1996 and 2005, proximal datasets including EM38, EM31, and γ-ray spectra for 2003–06, were collected from a site near Birchip. Elevation data were obtained from a Differential Global Positioning System and terrain derivatives were formulated. Yield zones developed from grain yield data and yield biomass estimations were included in this analysis. Statistical analysis methods, including spatial regression modelling, discriminant analysis via canonical variates analysis, and Bayesian spatial modelling, were undertaken to examine predictive capabilities of these datasets. Modelling of proximal data in association with crop yield found that EM38h, EM38v, and γ-ray total count were significantly correlated with yield for all seasons, while the terrain derivatives, relative elevation, slope, and elevation, were associated with yield for one season (1996, 1998, or 2005) only. Terrain derivatives, aspect, and profile and planimetric curvature were not associated with yield. Modest predictions of crop yield were established using these variables for the 1996 yield, while poor predictions were established in modelling yield zones.

Author(s):  
D. Anantha Reddy ◽  
Bhagyashri Dadore ◽  
Aarti Watekar

In Indian economy and employment agriculture plays major role. The most common problem faced by the Indian farmers is they do not opt crop based on the necessity of soil, as a result they face serious setback in productivity. This problem can be addressed through precision agriculture. This method takes three parameters into consideration, viz: soil characteristics, soil types and crop yield data collection based on these parameters suggesting the farmer suitable crop to be cultivated. Precision agriculture helps in reduction of non suitable crop which indeed increases productivity, apart from the following advantages like efficacy in input as well as output and better decision making for farming. This method gives solutions like proposing a recommendation system through an ensemble model with majority voting techniques using random tree, CHAID, K _ Nearest Neighbour and Naive Bayes as learner to recommend suitable crop based on soil parameters with high specific accuracy and efficiency. The classified image generated by these techniques consists of ground truth statistical data and parameters of it are weather, crop yield, state and district wise crops to predict the yield of a particular crop under particular weather condition.


2021 ◽  
Vol 13 (4) ◽  
pp. 2362
Author(s):  
Thomas M. Koutsos ◽  
Georgios C. Menexes ◽  
Andreas P. Mamolos

Agricultural fields have natural within-field soil variations that can be extensive, are usually contiguous, and are not always traceable. As a result, in many cases, site-specific attention is required to adjust inputs and optimize crop performance. Researchers, such as agronomists, agricultural engineers, or economists and other scientists, have shown increased interest in performing yield monitor data analysis to improve farmers’ decision-making concerning the better management of the agronomic inputs in the fields, while following a much more sustainable approach. In this case, spatial analysis of crop yield data with the form of spatial autocorrelation analysis can be used as a practical sustainable approach to locate statistically significant low-production areas. The resulted insights can be used as prescription maps on the tractors to reduce overall inputs and farming costs. This aim of this work is to present the benefits of conducting spatial analysis of yield crop data as a sustainable approach. Current work proves that the implementation of this process is costless, easy to perform and provides a better understanding of the current agronomic needs for better decision-making within a short time, adopting a sustainable approach.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 646
Author(s):  
Bini Darwin ◽  
Pamela Dharmaraj ◽  
Shajin Prince ◽  
Daniela Elena Popescu ◽  
Duraisamy Jude Hemanth

Precision agriculture is a crucial way to achieve greater yields by utilizing the natural deposits in a diverse environment. The yield of a crop may vary from year to year depending on the variations in climate, soil parameters and fertilizers used. Automation in the agricultural industry moderates the usage of resources and can increase the quality of food in the post-pandemic world. Agricultural robots have been developed for crop seeding, monitoring, weed control, pest management and harvesting. Physical counting of fruitlets, flowers or fruits at various phases of growth is labour intensive as well as an expensive procedure for crop yield estimation. Remote sensing technologies offer accuracy and reliability in crop yield prediction and estimation. The automation in image analysis with computer vision and deep learning models provides precise field and yield maps. In this review, it has been observed that the application of deep learning techniques has provided a better accuracy for smart farming. The crops taken for the study are fruits such as grapes, apples, citrus, tomatoes and vegetables such as sugarcane, corn, soybean, cucumber, maize, wheat. The research works which are carried out in this research paper are available as products for applications such as robot harvesting, weed detection and pest infestation. The methods which made use of conventional deep learning techniques have provided an average accuracy of 92.51%. This paper elucidates the diverse automation approaches for crop yield detection techniques with virtual analysis and classifier approaches. Technical hitches in the deep learning techniques have progressed with limitations and future investigations are also surveyed. This work highlights the machine vision and deep learning models which need to be explored for improving automated precision farming expressly during this pandemic.


2021 ◽  
Author(s):  
A. Kakarla ◽  
V. S. K. R. Munagala ◽  
T. Ishizaka ◽  
A. Fukuda ◽  
S. Jana

Bragantia ◽  
2010 ◽  
Vol 69 (suppl) ◽  
pp. 9-18 ◽  
Author(s):  
Osvaldo Guedes Filho ◽  
Sidney Rosa Vieira ◽  
Marcio Koiti Chiba ◽  
Célia Regina Grego

It is known, for a long time, that crop yields are not uniform at the field. In some places, it is possible to distinguish sites with both low and high yields even within the same area. This work aimed to evaluate the spatial and temporal variability of some crop yields and to identify potential zones for site specific management in an area under no-tillage system for 23 years. Data were analyzed from a 3.42 ha long term experimental area at the Centro Experimental Central of the Instituto Agronômico, located in Campinas, Sao Paulo State, Brazil. The crop yield data evaluated included the following crops: soybean, maize, lablab and triticale, and all of them were cultivated since 1985 and sampled at a regular grid of 302 points. Data were normalized and analyzed using descriptive statistics and geostatistical tools in order to demonstrate and describe the structure of the spatial variability. All crop yields showed high variability. All of them also showed spatial dependence and were fitted to the spherical model, except for the yield of the maize in 1999 productivity which was fitted to the exponential model. The north part of the area presented repeated high values of productivity in some years. There was a positive cross correlation amongst the productivity values, especially for the maize crops.


2001 ◽  
Vol 1 ◽  
pp. 767-776 ◽  
Author(s):  
E.D. Lund ◽  
M.C. Wolcott ◽  
G.P. Hanson

Soil texture varies significantly within many agricultural fields. The physical properties of soil, such as soil texture, have a direct effect on water holding capacity, cation exchange capacity, crop yield, production capability, and nitrogen (N) loss variations within a field. In short, mobile nutrients are used, lost, and stored differently as soil textures vary. A uniform application of N to varying soils results in a wide range of N availability to the crop. N applied in excess of crop usage results in a waste of the grower’s input expense, a potential negative effect on the environment, and in some crops a reduction of crop quality, yield, and harvestability. Inadequate N levels represent a lost opportunity for crop yield and profit. The global positioning system (GPS)-referenced mapping of bulk soil electrical conductivity (EC) has been shown to serve as an effective proxy for soil texture and other soil properties. Soils with a high clay content conduct more electricity than coarser textured soils, which results in higher EC values. This paper will describe the EC mapping process and provide case studies of site-specific N applications based on EC maps. Results of these case studies suggest that N can be managed site-specifically using a variety of management practices, including soil sampling, variable yield goals, and cropping history.


2013 ◽  
Vol 10 (3) ◽  
pp. 1529-1541 ◽  
Author(s):  
N. Wright ◽  
S. Zahirovic ◽  
R. D. Müller ◽  
M. Seton

Abstract. A variety of paleogeographic reconstructions have been published, with applications ranging from paleoclimate, ocean circulation and faunal radiation models to resource exploration; yet their uncertainties remain difficult to assess as they are generally presented as low-resolution static maps. We present a methodology for ground-truthing the digital Palaeogeographic Atlas of Australia by linking the GPlates plate reconstruction tool to the global Paleobiology Database and a Phanerozoic plate motion model. We develop a spatio-temporal data mining workflow to validate the Phanerozoic Palaeogeographic Atlas of Australia with paleoenvironments derived from fossil data. While there is general agreement between fossil data and the paleogeographic model, the methodology highlights key inconsistencies. The Early Devonian paleogeographic model of southeastern Australia insufficiently describes the Emsian inundation that may be refined using biofacies distributions. Additionally, the paleogeographic model and fossil data can be used to strengthen numerical models, such as the dynamic topography and the associated inundation of eastern Australia during the Cretaceous. Although paleobiology data provide constraints only for paleoenvironments with high preservation potential of organisms, our approach enables the use of additional proxy data to generate improved paleogeographic reconstructions.


Sign in / Sign up

Export Citation Format

Share Document