An informative set of SNP markers for molecular characterisation of Australian barley germplasm

2010 ◽  
Vol 61 (1) ◽  
pp. 70 ◽  
Author(s):  
M. J. Hayden ◽  
T. L. Tabone ◽  
T. M. Nguyen ◽  
S. Coventry ◽  
F. J. Keiper ◽  
...  

The identification of genetic variation using molecular markers is fundamental to modern plant breeding and research. The present study was undertaken to develop a resource of informative single nucleotide polymorphism (SNP) markers for molecular characterisation of Australian barley germplasm. In total, 190 SNP markers were developed and characterised using 88 elite barley lines and varieties, sampling genetic diversity relevant to Australian breeding programs, and a core set of 48 SNPs for distinguishing among the barley lines was identified. The utility of the core 48-SNP set for distinguishing barley lines and varieties using DNA extracted from grain samples was also assessed. Finally, the 48 SNPs in the core set were converted into simple PCR markers to enable co-dominant SNP genotyping on agarose gel. The SNP markers developed, and in particular the core 48-SNP set, provide a useful marker resource for assessing genetic relationships between individuals and populations of current Australian barley germplasm. They are also useful for identity and purity testing of inbred lines in research, breeding, and commercial applications.

2021 ◽  
Author(s):  
ZHIYONG Chen ◽  
Yancen He ◽  
Yasir Iqbal ◽  
Yanlan Shi ◽  
Hongmei Huang ◽  
...  

Abstract Background: Miscanthus, which is a leading dedicated-energy grass in Europe and in parts of Asia, is expected to play a key role in the development of the future bioeconomy. However, due to its complex genetic background, it is difficult to investigate phylogenetic relationships and the evolution of gene function in this genus. Here, we investigated 50 Miscanthus germplasms: 1 female parent (M. lutarioriparius), 30 candidate male parents (M. lutarioriparius, M. sinensis, and M. sacchariflorus), and 19 offspring. We used high-throughput Specific-Locus Amplified Fragment sequencing (SLAF-seq) to identify informative single nucleotide polymorphisms (SNPs) in all germplasms.Results: We identified 800,081 SLAF tags, of which 160,368 were polymorphic. Each tag was 264–364 bp long. The obtained SNPs were used to investigate genetic relationships within Miscanthus. We constructed a phylogenetic tree of the 50 germplasms using the obtained SNPs, and found that the germplasms fell into two clades: one clade of M. sinensis only and one clade that included the offspring, M. lutarioriparius, and M. sacchariflorus. Genetic cluster analysis indicated that M. lutarioriparius germplasm C3 was the most likely male parent of the offspring.Conclusions: As a high-throughput sequencing method, SLAF-seq can be used to identify informative SNPs in Miscanthus germplasms and to rapidly characterize genetic relationships within this genus. Our results will support the development of breeding programs utilizing Miscanthus cultivars with elite biomass- or fiber-production potential.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8572 ◽  
Author(s):  
Suzhen Niu ◽  
Hisashi Koiwa ◽  
Qinfei Song ◽  
Dahe Qiao ◽  
Juan Chen ◽  
...  

An accurate depiction of the genetic relationship, the development of core collection, and genome-wide association analysis (GWAS) are key for the effective exploitation and utilization of genetic resources. Here, genotyping-by-sequencing (GBS) was used to characterize 415 tea accessions mostly collected from the Guizhou region in China. A total of 30,282 high-quality SNPs was used to estimate the genetic relationships, develop core collections, and perform GWAS. We suggest 198 and 148 accessions to represent the core set and mini-core set, which consist of 47% and 37% of the whole collection, respectively, and contain 93–95% of the total SNPs. Furthermore, the frequencies of all alleles and genotypes in the whole set were very well retained in the core set and mini-core set. The 415 accessions were clustered into 14 groups and the core and the mini-core collections contain accessions from each group, species, cultivation status and growth habit. By analyzing the significant SNP markers associated with multiple traits, nine SNPs were found to be significantly associated with four leaf size traits, namely MLL, MLW, MLA and MLSI (P < 1.655E−06). This study characterized the genetic distance and relationship of tea collections, suggested the core collections, and established an efficient GWAS analysis of GBS result.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Zhiyong Chen ◽  
Yancen He ◽  
Yasir Iqbal ◽  
Yanlan Shi ◽  
Hongmei Huang ◽  
...  

Abstract Background Miscanthus, which is a leading dedicated-energy grass in Europe and in parts of Asia, is expected to play a key role in the development of the future bioeconomy. However, due to its complex genetic background, it is difficult to investigate phylogenetic relationships in this genus. Here, we investigated 50 Miscanthus germplasms: 1 female parent (M. lutarioriparius), 30 candidate male parents (M. lutarioriparius, M. sinensis, and M. sacchariflorus), and 19 offspring. We used high-throughput Specific-Locus Amplified Fragment sequencing (SLAF-seq) to identify informative single nucleotide polymorphisms (SNPs) in all germplasms. Results We identified 257,889 SLAF tags, of which 87,162 were polymorphic. Each tag was 264–364 bp long. The obtained 724,773 population SNPs were used to investigate genetic relationships within three species of Miscanthus. We constructed a phylogenetic tree of the 50 germplasms using the obtained SNPs and grouped them into two clades: one clade comprised of M. sinensis alone and the other one included the offspring, M. lutarioriparius, and M. sacchariflorus. Genetic cluster analysis had revealed that M. lutarioriparius germplasm C3 was the most likely male parent of the offspring. Conclusions As a high-throughput sequencing method, SLAF-seq can be used to identify informative SNPs in Miscanthus germplasms and to rapidly characterize genetic relationships within this genus. Our results will support the development of breeding programs with the focus on utilizing Miscanthus cultivars with elite biomass- or fiber-production potential for the developing bioeconomy.


2019 ◽  
Vol 15 ◽  
pp. 117693431988994
Author(s):  
Shulin Zhang ◽  
Yaling Cai ◽  
Jinggong Guo ◽  
Kun Li ◽  
Renhai Peng ◽  
...  

Determining the genetic rearrangement and domestication footprints in Gossypium hirsutum cultivars and primitive race genotypes are essential for effective gene conservation efforts and the development of advanced breeding molecular markers for marker-assisted breeding. In this study, 94 accessions representing the 7 primitive races of G hirsutum, along with 9 G hirsutum and 12 Gossypium barbadense cultivated accessions were evaluated. The genotyping-by-sequencing (GBS) approach was employed and 146 558 single nucleotide polymorphisms (SNP) were generated. Distinct SNP signatures were identified through the combination of selection scans and association analyses. Phylogenetic analyses were also conducted, and we concluded that the Latifolium, Richmondi, and Marie-Galante race accessions were more genetically related to the G hirsutum cultivars and tend to cluster together. Fifty-four outlier SNP loci were identified by selection-scan analysis, and 3 SNPs were located in genes related to the processes of plant responding to stress conditions and confirmed through further genome-wide signals of marker-phenotype association analysis, which indicate a clear selection signature for such trait. These results identified useful candidate gene locus for cotton breeding programs.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2025
Author(s):  
Shyryn Almerekova ◽  
Yuliya Genievskaya ◽  
Saule Abugalieva ◽  
Kazuhiro Sato ◽  
Yerlan Turuspekov

The genetic relationship and population structure of two-rowed barley accessions from Kazakhstan were assessed using single-nucleotide polymorphism (SNP) markers. Two different approaches were employed in the analysis: (1) the accessions from Kazakhstan were compared with barley samples from six different regions around the world using 1955 polymorphic SNPs, and (2) 94 accessions collected from six breeding programs from Kazakhstan were studied using 5636 polymorphic SNPs using a 9K Illumina Infinium assay. In the first approach, the neighbor-joining tree showed that the majority of the accessions from Kazakhstan were grouped in a separate subcluster with a common ancestral node; there was a sister subcluster that comprised mainly barley samples that originated in Europe. The Pearson’s correlation analysis suggested that Kazakh accessions were genetically close to samples from Africa and Europe. In the second approach, the application of the STRUCTURE package using 5636 polymorphic SNPs suggested that Kazakh barley samples consisted of five subclusters in three major clusters. The principal coordinate analysis plot showed that, among six breeding origins in Kazakhstan, the Krasnovodopad (KV) and Karaganda (KA) samples were the most distant groups. The assessment of the pedigrees in the KV and KA samples showed that the hybridization schemes in these breeding stations heavily used accessions from Ethiopia and Ukraine, respectively. The comparative analysis of the KV and KA samples allowed us to identify 214 SNPs with opposite allele frequencies that were tightly linked to 60 genes/gene blocks associated with plant adaptation traits, such as the heading date and plant height. The identified SNP markers can be efficiently used in studies of barley adaptation and deployed in breeding projects to develop new competitive cultivars.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Wang ◽  
Xiaohua Wu ◽  
Yanwei Li ◽  
Zishan Feng ◽  
Zihan Mu ◽  
...  

Germplasm collections are indispensable resources for the mining of important genes and variety improvement. To preserve and utilize germplasm collections in bottle gourd, we identified and validated a highly informative core single-nucleotide polymorphism (SNP) marker set from 1,100 SNPs. This marker set consisted of 22 uniformly distributed core SNPs with abundant polymorphisms, which were established to have strong representativeness and discriminatory power based on analyses of 206 bottle gourd germplasm collections and a multiparent advanced generation inter-cross (MAGIC) population. The core SNP markers were used to assess genetic diversity and population structure, and to fingerprint important accessions, which could provide an optimized procedure for seed authentication. Furthermore, using the core SNP marker set, we developed an accessible core population of 150 accessions that represents 100% of the genetic variation in bottle gourds. This core population will make an important contribution to the preservation and utilization of bottle gourd germplasm collections, cultivar identification, and marker-assisted breeding.


Genome ◽  
2006 ◽  
Vol 49 (10) ◽  
pp. 1256-1264 ◽  
Author(s):  
Jinggui Fang ◽  
Tal Twito ◽  
Zhen Zhang ◽  
ChihCheng T. Chao

Genetic relationships among 50 fruiting-mei (Prunus mume Sieb. et Zucc.) cultivars from China and Japan were investigated, using 767 amplified fragment length polymorphism (AFLP) and 103 single nucleotide polymorphism (SNP) markers. The polymorphism among the cultivars was found to be 69.77%, based on EcoR I + Mse I AFLP primer pairs. The sequence alignment of 11 group sequences, derived from 50 samples, yielded 103 SNPs; the total length of genomic sequences was 3683 bp. Among these SNPs, 73 were heterozygous in the loci of different cultivars. The SNP distribution was 58% transition, 40% transversion, and 2% InDels. There was also 1 trinucleotide deletion. AFLP and SNP markers allowed us to evaluate the genetic diversity of these 50 fruiting-mei cultivars. The 2 derived cladograms did display some differences: all cultivars formed 2 subclusters (1A and 1B) in the cladogram based on AFLP polymorphisms, and formed 3 subclusters (2A, 2B, and 2C) in the cladogram based on SNP polymorphisms; and, in the cladogram based on AFLP polymorphisms, most cultivars from the Guangdong to Fujian provinces (G–F) in China, from the Yunnan, Hunan, and Sichuan provinces (Y–S–H) in China, and from Japan grouped in cluster 1A, and 18 (78.26%) of 23 cultivars from Jiangsu to Zhejiang provinces in China (J–Z) grouped in cluster 1B. The results demonstrate that mei cultivars from Japan are clustered with cultivars from China, and support the hypothesis that mei in Japan were introduced from China. Cultivars from the J–Z region of China have more genetic similarities. Cultivars from the G–F and Y–S–H regions have fewer genetic similarities and suggest more germplasm exchanges in the past.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 563 ◽  
Author(s):  
Monica Marilena Miazzi ◽  
Nunzio D’Agostino ◽  
Valentina di Rienzo ◽  
Pasquale Venerito ◽  
Vito Nicola Savino ◽  
...  

The investigation on the genetic diversity of grapevine germplasm is crucial for a more efficient use of grapevine genetic resources in light of changing environmental conditions. Here, we used simple sequence repeats (SSRs) coupled with single nucleotide polymorphism (SNP) markers to disclose grapevine genetic diversity of a collection of Apulian minor/neglected genotypes. Their relationships with national or international cultivars were also examined. Genetic diversity was investigated using 10 SSR markers and 1,178 SNPs generated by genotyping by sequencing (GBS). Based on the SSR data, the 128 genotypes were classified into six main genetic clusters. Twenty-four putative cases of synonymy and 2 of misnamings were detected. Ten “unknown” autochthonous genotypes did not show high similarity to Apulian, national, or international varieties. We took advantage of available GBS-derived SNP data points for only forty genotypes to better investigate the genetic distance among them, identify private SNP alleles, and divergent loci putatively under selection. Based on SNP alleles, two interesting gene pools of minor/neglected Apulian samples were identified. Genetic divergence was investigated by FST and allowed the detection of loci capable of differentiating the gene pools. Overall, this work emphasizes the need for recovering the untapped genetic variability that characterizes minor/neglected grapevine Apulian genotypes and the requirement to preserve and use more efficiently grapevine genetic resources in breeding programs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Debjani Roy Choudhury ◽  
Ramesh Kumar ◽  
Vimala Devi S ◽  
Kuldeep Singh ◽  
N. K. Singh ◽  
...  

In India, rice (Oryza sativa L.) is cultivated under a variety of climatic conditions. Due to the fragility of the coastal ecosystem, rice farming in these areas has lagged behind. Salinity coupled with floods has added to this trend. Hence, to prevent genetic erosion, conserving and characterizing the coastal rice, is the need of the hour. This work accessed the genetic variation and population structure among 2,242 rice accessions originating from India’s east coast comprising Andhra Pradesh, Orissa, and Tamil Nadu, using 36 SNP markers, and have generated a core set (247 accessions) as well as a mini-core set (30 accessions) of rice germplasm. All the 36 SNP loci were biallelic and 72 alleles found with average two alleles per locus. The genetic relatedness of the total collection was inferred using the un-rooted neighbor-joining tree, which grouped all the genotypes (2,242) into three major clusters. Two groups were obtained with a core set and three groups obtained with a mini core set. The mean PIC value of total collection was 0.24, and those of the core collection and mini core collection were 0.27 and 0.32, respectively. The mean heterozygosity and gene diversity of the overall collection were 0.07 and 0.29, respectively, and the core set and mini core set revealed 0.12 and 0.34, 0.20 and 0.40 values, respectively, representing 99% of distinctiveness in the core and mini core sets. Population structure analysis showed maximum population at K = 4 for total collection and core collection. Accessions were distributed according to their population structure confirmed by PCoA and AMOVA analysis. The identified small and diverse core set panel will be useful in allele mining for biotic and abiotic traits and managing the genetic diversity of the coastal rice collection. Validation of the 36-plex SNP assay was done by comparing the genetic diversity parameters across two different rice core collections, i.e., east coast and northeast rice collection. The same set of SNP markers was found very effective in deciphering diversity at different genetic parameters in both the collections; hence, these marker sets can be utilized for core development and diversity analysis studies.


Genome ◽  
2020 ◽  
Vol 63 (6) ◽  
pp. 319-327 ◽  
Author(s):  
E.S. Redjeki ◽  
W.K. Ho ◽  
N. Shah ◽  
O.O. Molosiwa ◽  
N.R. Ardiarini ◽  
...  

A total of 170 bambara groundnut (Vigna subterranea) accessions were evaluated using both simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers generated using genotyping-by-sequencing (GbS), of which 56 accessions were collected from West and East Java. Principal coordinate analysis (PCoA), population structure, and cluster analysis suggest that the East Java accessions could be a result of the introduction of selected West Java accessions. In addition, the current Indonesian accessions were likely introduced from Southern Africa, which would have produced a very marked founding effect such that these accessions present only a fraction of the genetic variability that exists within this species.


Sign in / Sign up

Export Citation Format

Share Document