scholarly journals Investigation of genetic relationships within three Miscanthus species using SNP markers identified with SLAF-seq

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Zhiyong Chen ◽  
Yancen He ◽  
Yasir Iqbal ◽  
Yanlan Shi ◽  
Hongmei Huang ◽  
...  

Abstract Background Miscanthus, which is a leading dedicated-energy grass in Europe and in parts of Asia, is expected to play a key role in the development of the future bioeconomy. However, due to its complex genetic background, it is difficult to investigate phylogenetic relationships in this genus. Here, we investigated 50 Miscanthus germplasms: 1 female parent (M. lutarioriparius), 30 candidate male parents (M. lutarioriparius, M. sinensis, and M. sacchariflorus), and 19 offspring. We used high-throughput Specific-Locus Amplified Fragment sequencing (SLAF-seq) to identify informative single nucleotide polymorphisms (SNPs) in all germplasms. Results We identified 257,889 SLAF tags, of which 87,162 were polymorphic. Each tag was 264–364 bp long. The obtained 724,773 population SNPs were used to investigate genetic relationships within three species of Miscanthus. We constructed a phylogenetic tree of the 50 germplasms using the obtained SNPs and grouped them into two clades: one clade comprised of M. sinensis alone and the other one included the offspring, M. lutarioriparius, and M. sacchariflorus. Genetic cluster analysis had revealed that M. lutarioriparius germplasm C3 was the most likely male parent of the offspring. Conclusions As a high-throughput sequencing method, SLAF-seq can be used to identify informative SNPs in Miscanthus germplasms and to rapidly characterize genetic relationships within this genus. Our results will support the development of breeding programs with the focus on utilizing Miscanthus cultivars with elite biomass- or fiber-production potential for the developing bioeconomy.

2021 ◽  
Author(s):  
ZHIYONG Chen ◽  
Yancen He ◽  
Yasir Iqbal ◽  
Yanlan Shi ◽  
Hongmei Huang ◽  
...  

Abstract Background: Miscanthus, which is a leading dedicated-energy grass in Europe and in parts of Asia, is expected to play a key role in the development of the future bioeconomy. However, due to its complex genetic background, it is difficult to investigate phylogenetic relationships and the evolution of gene function in this genus. Here, we investigated 50 Miscanthus germplasms: 1 female parent (M. lutarioriparius), 30 candidate male parents (M. lutarioriparius, M. sinensis, and M. sacchariflorus), and 19 offspring. We used high-throughput Specific-Locus Amplified Fragment sequencing (SLAF-seq) to identify informative single nucleotide polymorphisms (SNPs) in all germplasms.Results: We identified 800,081 SLAF tags, of which 160,368 were polymorphic. Each tag was 264–364 bp long. The obtained SNPs were used to investigate genetic relationships within Miscanthus. We constructed a phylogenetic tree of the 50 germplasms using the obtained SNPs, and found that the germplasms fell into two clades: one clade of M. sinensis only and one clade that included the offspring, M. lutarioriparius, and M. sacchariflorus. Genetic cluster analysis indicated that M. lutarioriparius germplasm C3 was the most likely male parent of the offspring.Conclusions: As a high-throughput sequencing method, SLAF-seq can be used to identify informative SNPs in Miscanthus germplasms and to rapidly characterize genetic relationships within this genus. Our results will support the development of breeding programs utilizing Miscanthus cultivars with elite biomass- or fiber-production potential.


2019 ◽  
Vol 15 ◽  
pp. 117693431988994
Author(s):  
Shulin Zhang ◽  
Yaling Cai ◽  
Jinggong Guo ◽  
Kun Li ◽  
Renhai Peng ◽  
...  

Determining the genetic rearrangement and domestication footprints in Gossypium hirsutum cultivars and primitive race genotypes are essential for effective gene conservation efforts and the development of advanced breeding molecular markers for marker-assisted breeding. In this study, 94 accessions representing the 7 primitive races of G hirsutum, along with 9 G hirsutum and 12 Gossypium barbadense cultivated accessions were evaluated. The genotyping-by-sequencing (GBS) approach was employed and 146 558 single nucleotide polymorphisms (SNP) were generated. Distinct SNP signatures were identified through the combination of selection scans and association analyses. Phylogenetic analyses were also conducted, and we concluded that the Latifolium, Richmondi, and Marie-Galante race accessions were more genetically related to the G hirsutum cultivars and tend to cluster together. Fifty-four outlier SNP loci were identified by selection-scan analysis, and 3 SNPs were located in genes related to the processes of plant responding to stress conditions and confirmed through further genome-wide signals of marker-phenotype association analysis, which indicate a clear selection signature for such trait. These results identified useful candidate gene locus for cotton breeding programs.


2010 ◽  
Vol 61 (1) ◽  
pp. 70 ◽  
Author(s):  
M. J. Hayden ◽  
T. L. Tabone ◽  
T. M. Nguyen ◽  
S. Coventry ◽  
F. J. Keiper ◽  
...  

The identification of genetic variation using molecular markers is fundamental to modern plant breeding and research. The present study was undertaken to develop a resource of informative single nucleotide polymorphism (SNP) markers for molecular characterisation of Australian barley germplasm. In total, 190 SNP markers were developed and characterised using 88 elite barley lines and varieties, sampling genetic diversity relevant to Australian breeding programs, and a core set of 48 SNPs for distinguishing among the barley lines was identified. The utility of the core 48-SNP set for distinguishing barley lines and varieties using DNA extracted from grain samples was also assessed. Finally, the 48 SNPs in the core set were converted into simple PCR markers to enable co-dominant SNP genotyping on agarose gel. The SNP markers developed, and in particular the core 48-SNP set, provide a useful marker resource for assessing genetic relationships between individuals and populations of current Australian barley germplasm. They are also useful for identity and purity testing of inbred lines in research, breeding, and commercial applications.


2018 ◽  
Author(s):  
Brian S. Helfer ◽  
Darrell O. Ricke

AbstractHigh throughput sequencing (HTS) of single nucleotide polymorphisms (SNPs) provides additional applications for DNA forensics including identification, mixture analysis, kinship prediction, and biogeographic ancestry prediction. Public repositories of human genetic data are being rapidly generated and released, but the majorities of these samples are de-identified to protect privacy, and have little or no individual metadata such as appearance (photos), ethnicity, relatives, etc. A reference in silico dataset has been generated to enable development and testing of new DNA forensics algorithms. This dataset provides 11 million SNP profiles for individuals with defined ethnicities and family relationships spanning eight generations with admixture for a panel with 39,108 SNPs.


2018 ◽  
Vol 50 (5) ◽  
pp. 393-405 ◽  
Author(s):  
Yin Zhang ◽  
Guidong Miao ◽  
Hanafiah Fazhan ◽  
Khor Waiho ◽  
Huaiping Zheng ◽  
...  

The crucifix crab, Charybdis feriatus, which mainly inhabits Indo-Pacific region, is regarded as one of the most high-potential species for domestication and incorporation into the aquaculture sector. However, the regulatory mechanisms of sex determination and differentiation of this species remain unclear. To identify candidate genes involved in sex determination and differentiation, high throughput sequencing of transcriptome from the testis and ovary of C. feriatus was performed by the Illumina platform. After removing adaptor primers, low-quality sequences and very short (<50 nt) reads, we obtained 80.9 million and 66.2 million clean reads from testis and ovary, respectively. A total of 86,433 unigenes were assembled, and ~43% (37,500 unigenes) were successfully annotated to the NR, NT, Swiss-Prot, KEGG, COG, GO databases. By comparing the testis and ovary libraries, we obtained 27,636 differentially expressed genes. Some candidate genes involved in the sex determination and differentiation of C. feriatus were identified, such as vasa, pgds, vgr, hsp90, dsx-f, fem-1, and gpr. In addition, 88,608 simple sequence repeats were obtained, and 61,929 and 77,473 single nucleotide polymorphisms from testis and ovary were detected, respectively. The transcriptome profiling was validated by quantitative real-time PCR in 30 selected genes, which showed a good consistency. The present study is the first high-throughput transcriptome sequencing of C. feriatus. These findings will be useful for future functional analysis of sex-associated genes and molecular marker-assisted selections in C. feriatus.


2014 ◽  
Vol 12 (S1) ◽  
pp. S36-S40 ◽  
Author(s):  
Yoo-Jin Lee ◽  
Michael J. Thomson ◽  
Joong Hyoun Chin

High-throughput genotyping using single-nucleotide polymorphisms (SNP) is one tool that can be used to study the genetic relationships between wild rice relatives and cultivated rice. In this study, a set of 96 indica–japonica SNP markers, which can differentiate indica and japonica subspecies of rice, were used to characterize 227 Oryza accessions including 93 AA genome accessions from seven wild Oryza species. A total of 72 markers of the 96 markers were selected for the phylogenetic study and allele polymorphism survey. A subset of SNP markers were present only in Oryza sativa and evolutionarily close species, Oryza nivara and Oryza rufipogon. These markers can be used for distinguishing cultivated rice from the other species and vice versa. Eight clusters were generated through phylogenetic analysis, and Oryza meridionalis and Oryza longistaminata appeared to be the most distantly related species to cultivated rice. In this study, Oryza barthii and Oryza glaberrima accessions were found to exhibit high genetic similarity. Across the wild species, more indica-type alleles were detected for most accessions. In this study, a set of markers selected to be informative across O. sativa accessions were used, but it will be interesting to compare the results of this study with SNP data obtained through next-generation sequencing in the future.


2007 ◽  
Vol 10 (4) ◽  
pp. 604-625 ◽  
Author(s):  
Ulf Hannelius ◽  
Loreana Gherman ◽  
Ville-Veikko Mäkelä ◽  
Astrid Lindstedt ◽  
Marco Zucchelli ◽  
...  

AbstractA requirement for performing robust genetic and statistical analyses on twins is correctly assigned zygosities. In order to increase the power to detect small risk factors of disease, zygosity testing should also be amenable for high throughput screening. In this study we validate and implement the use of a panel of 50 single nucleotide polymorphisms (SNPs) for reliable high throughput zygosity testing and compare it to a panel of 16 short tandem repeats (STRs). We genotyped both genomic (gDNA) and whole genome amplified DNA (WGA DNA), ending up with 47 SNP and 11 STR markers fulfilling our quality criteria. Out of 99 studied twin pairs, 2 were assigned a different zygosity using SNP and STR data as compared to self reported zygosity in a questionnaire. We also performed a sensitivity analysis based on simulated data where we evaluated the effects of genotyping error, shifts in allele frequencies and missing data on the qualitative zygosity assignments. The frequency of false positives was less than 0.01 when assuming a 1% genotyping error, a decrease of 10% of the observed minor allele frequency compared to the actual values and up to 10 missing markers. The SNP markers were also successfully genotyped on both gDNA and WGA DNA from whole blood, saliva and filter paper. In conclusion, we validate a robust panel of 47 highly multiplexed SNPs that provide reliable and high quality data on a range of different DNA templates.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jinkwan Jo ◽  
Youngin Kim ◽  
Geon Woo Kim ◽  
Jin-Kyung Kwon ◽  
Byoung-Cheorl Kang

Genotyping by sequencing (GBS) enables genotyping of multiple loci at low cost. However, the single nucleotide polymorphisms (SNPs) revealed by GBS tend to be randomly distributed between individuals, limiting their direct comparisons without applying the various filter options to obtain a comparable dataset of SNPs. Here, we developed a panel of a multiplex targeted sequencing method, genotyping-in-thousands by sequencing (GT-seq), to genotype SNPs in Capsicum spp. Previously developed Fluidigm® SNP markers were converted to GT-seq markers and combined with new GT-seq markers developed using SNP information obtained through GBS. We then optimized multiplex PCR conditions: we obtained the highest genotyping rate when the first PCR consisted of 25 cycles. In addition, we determined that 101 primer pairs performed best when amplifying target sequences of 79 bp. We minimized interference of multiplex PCR by primer dimer formation using the PrimerPooler program. Using our GT-seq pipeline on Illumina Miseq and Nextseq platforms, we genotyped up to 1,500 (Miseq) and 1,300 (Nextseq) samples for the optimum panel size of 100 loci. To allow the genotyping of Capsicum species, we designed 332 informative GT-seq markers from Fluidigm SNP markers and GBS-derived SNPs. This study illustrates the first application of GT-seq in crop plants. The GT-seq marker set developed here will be a useful tool for molecular breeding of peppers in the future.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guanghui An ◽  
Jiongjiong Chen

Abstract Background Mustard (Brassica juncea) is an important economic vegetable, and some cultivars have purple leaves and accumulate more anthocyanins than the green. The genetic and evolution of purple trait in mustard has not been well studied. Result In this study, free-hand sections and metabolomics showed that the purple leaves of mustard accumulated more anthocyanins than green ones. The gene controlling purple leaves in mustard, Mustard Purple Leaves (MPL), was genetically mapped and a MYB113-like homolog was identified as the candidate gene. We identified three alleles of the MYB113-like gene, BjMYB113a from a purple cultivar, BjMYB113b and BjMYB113c from green cultivars. A total of 45 single nucleotide polymorphisms (SNPs) and 8 InDels were found between the promoter sequences of the purple allele BjMYB113a and the green allele BjMYB113b. On the other hand, the only sequence variation between the purple allele BjMYB113a and the green allele BjMYB113c is an insertion of 1,033-bp fragment in the 3’region of BjMYB113c. Transgenic assay and promoter activity studies showed that the polymorphism in the promoter region was responsible for the up-regulation of the purple allele BjMYB113a and high accumulation of anthocyanin in the purple cultivar. The up-regulation of BjMYB113a increased the expression of genes in the anthocyanin biosynthesis pathway including BjCHS, BjF3H, BjF3’H, BjDFR, BjANS and BjUGFT, and consequently led to high accumulation of anthocyanin. However, the up-regulation of BjMYB113 was compromised by the insertion of 1,033-bp in 3’region of the allele BjMYB113c. Conclusions Our results contribute to a better understanding of the genetics and evolution of the BjMYB113 gene controlling purple leaves and provide useful information for further breeding programs of mustard.


2021 ◽  
Vol 22 (4) ◽  
pp. 1832
Author(s):  
Eugene Metakovsky ◽  
Laura Pascual ◽  
Patrizia Vaccino ◽  
Viktor Melnik ◽  
Marta Rodriguez-Quijano ◽  
...  

The Gli-B1-encoded γ-gliadins and non-coding γ-gliadin DNA sequences for 15 different alleles of common wheat have been compared using seven tests: electrophoretic mobility (EM) and molecular weight (MW) of the encoded major γ-gliadin, restriction fragment length polymorphism patterns (RFLPs) (three different markers), Gli-B1-γ-gliadin-pseudogene known SNP markers (Single nucleotide polymorphisms) and sequencing the pseudogene GAG56B. It was discovered that encoded γ-gliadins, with contrasting EM, had similar MWs. However, seven allelic variants (designated from I to VII) differed among them in the other six tests: I (alleles Gli-B1i, k, m, o), II (Gli-B1n, q, s), III (Gli-B1b), IV (Gli-B1e, f, g), V (Gli-B1h), VI (Gli-B1d) and VII (Gli-B1a). Allele Gli-B1c (variant VIII) was identical to the alleles from group IV in four of the tests. Some tests might show a fine difference between alleles belonging to the same variant. Our results attest in favor of the independent origin of at least seven variants at the Gli-B1 locus that might originate from deeply diverged genotypes of the donor(s) of the B genome in hexaploid wheat and therefore might be called “heteroallelic”. The donor’s particularities at the Gli-B1 locus might be conserved since that time and decisively contribute to the current high genetic diversity of common wheat.


Sign in / Sign up

Export Citation Format

Share Document