Water extraction by sugarcane on soils of the Ord Irrigation Area

2003 ◽  
Vol 43 (5) ◽  
pp. 487 ◽  
Author(s):  
G. M. Plunkett ◽  
R. C. Muchow

Sugarcane is a new commercial crop in the Ord River Irrigation Area and irrigation management strategies are required for profitable production with minimal environmental consequences such as rising ground water. Knowledge of soil water properties and sugarcane water requirements is a necessary prerequisite for best-practice irrigation. Accordingly, soil water measurements were taken to quantify the amount and depth pattern of water extraction by sugarcane on the Ivanhoe Plain in the Ord River Irrigation Area.The drained upper limit and crop lower limit of extraction were measured on 4 soil types. The amount of soil water available to the sugarcane plant varied between soil types, ranging from 226 to 167 mm in a 2.0 m profile. Sugarcane extracted water down to 1.8 m at the Central and Northern Ivanhoe sites, down to 1.6 m at the Southern Ivanhoe site, but only down to 1.0 m at the Aquitaine site. The pattern of water use over time was determined at 2�sites and showed higher crop water use before the wet season and much lower crop water use after the wet season. There was considerable reduction in the ratio of crop water use to Class A pan evaporation after the wet season. Lower irrigation frequency after the wet season on maturing crops will improve irrigation efficiency and reduce impacts on the environment.This knowledge of the different soil water properties of the 4 soil types can be used with crop growth models to develop recommendations for best-practice irrigation management of sugarcane across the Ord River Irrigation Area. These recommendations need to account for the high soil water extraction capability of sugarcane growing in this environment.

Geoderma ◽  
2018 ◽  
Vol 327 ◽  
pp. 13-24 ◽  
Author(s):  
Mukhtar Ahmad ◽  
Debashis Chakraborty ◽  
Pramila Aggarwal ◽  
Ranjan Bhattacharyya ◽  
Ravender Singh

2018 ◽  
Vol 10 (11) ◽  
pp. 1682 ◽  
Author(s):  
Kelly Thorp ◽  
Alison Thompson ◽  
Sara Harders ◽  
Andrew French ◽  
Richard Ward

Improvement of crop water use efficiency (CWUE), defined as crop yield per volume of water used, is an important goal for both crop management and breeding. While many technologies have been developed for measuring crop water use in crop management studies, rarely have these techniques been applied at the scale of breeding plots. The objective was to develop a high-throughput methodology for quantifying water use in a cotton breeding trial at Maricopa, AZ, USA in 2016 and 2017, using evapotranspiration (ET) measurements from a co-located irrigation management trial to evaluate the approach. Approximately weekly overflights with an unmanned aerial system provided multispectral imagery from which plot-level fractional vegetation cover ( f c ) was computed. The f c data were used to drive a daily ET-based soil water balance model for seasonal crop water use quantification. A mixed model statistical analysis demonstrated that differences in ET and CWUE could be discriminated among eight cotton varieties ( p < 0 . 05 ), which were sown at two planting dates and managed with four irrigation levels. The results permitted breeders to identify cotton varieties with more favorable water use characteristics and higher CWUE, indicating that the methodology could become a useful tool for breeding selection.


1991 ◽  
Vol 19 (2) ◽  
pp. 117-134 ◽  
Author(s):  
Orlan Buller ◽  
Harry L. Manges ◽  
Loyd R. Stone ◽  
Jeffery R. Williams

2019 ◽  
Author(s):  
Jannis Groh ◽  
Jan Vanderborght ◽  
Thomas Pütz ◽  
Hans-Jörg Vogel ◽  
Ralf Gründling ◽  
...  

Abstract. Future crop production will be affected by climatic changes. In several regions, the projected changes in total rainfall and seasonal rainfall patterns will lead to lower soil water storage (SWS) which in turn affects crop water uptake, crop yield, water use efficiency, grain quality and groundwater recharge. Effects of climate change on those variables depend on the soil properties and were often estimated based on model simulations. The objective of this study was to investigate the response of key variables in four different soils and for two different climates in Germany with different aridity index: 1.09 for the wetter (range: 0.82 to 1.29) and 1.57 for the drier climate (range: 1.19 to 1.77), by using high-precision weighable lysimeters. According to a “space-for-time” concept, intact soil monoliths that were moved to sites with contrasting climatic conditions have been monitored from April 2011 until December 2018. Evapotranspiration was lower for the same soil under the relatively drier climate whereas crop yield was significantly higher, without affecting grain quality. Especially non-productive water losses (evapotranspiration out of the main growing period) were lower which led to a more efficient crop water use in the drier climate. A characteristic decrease of the SWS for soils with a finer texture was observed after a longer drought period under a drier climate. The reduced SWS after the drought remained until the end of the observation period which demonstrates carry-over of drought from one growing season to another and the overall long term effects of single drought events. In the relatively drier climate, water flow at the soil profile bottom showed a small net upward flux over the entire monitoring period as compared to downward fluxes (ground water recharge) or drainage in the relatively wetter climate and larger recharge rates in the coarser- as compared to finer-textured soils. The large variability of recharge from year to year and the long lasting effects of drought periods on SWS imply that long term monitoring of soil water balance components is necessary to obtain representative estimates. Results confirmed a more efficient crop water use under less optimal soil moisture conditions. Long-term effects of changing climatic conditions on the SWS and ecosystem productivity should be considered when trying to develop adaptation strategies in the agricultural sector.


2011 ◽  
Vol 15 (10) ◽  
pp. 3061-3070 ◽  
Author(s):  
J. M. Sánchez ◽  
R. López-Urrea ◽  
E. Rubio ◽  
V. Caselles

Abstract. Estimates of surface actual evapotranspiration (ET) can assist in predicting crop water requirements. An alternative to the traditional crop-coefficient methods are the energy balance models. The objective of this research was to show how surface temperature observations can be used, together with a two-source energy balance model, to determine crop water use throughout the different phenological stages of a crop grown. Radiometric temperatures were collected in a sorghum (Sorghum bicolor) field as part of an experimental campaign carried out in Barrax, Spain, during the 2010 summer growing season. Performance of the Simplified Two-Source Energy Balance (STSEB) model was evaluated by comparison of estimated ET with values measured on a weighing lysimeter. Errors of ±0.14 mm h−1 and ±1.0 mm d−1 were obtained at hourly and daily scales, respectively. Total accumulated crop water use during the campaign was underestimated by 5%. It is then shown that thermal radiometry can provide precise crop water necessities and is a promising tool for irrigation management.


2006 ◽  
Vol 46 (3) ◽  
pp. 327 ◽  
Author(s):  
G. N. Mundy ◽  
K. L. Greenwood ◽  
K. B. Kelly ◽  
S. M. Austin ◽  
K. E. Dellow

A field experiment was conducted from January 2000 for 2.5 years, at the Department of Primary Industries, Kyabram, in northern Victoria. The experiment determined the effect of soil modification, with and without subsurface drainage, on the yield and water use of tall fescue (Festuca arundinacea), lucerne (Medicago sativa), phalaris (Phalaris aquatica) and perennial ryegrass (Lolium perenne) under 2 irrigation frequencies. The soil was a red-brown earth. The forages were spray irrigated from August to May when evaporation minus rainfall (E – R) reached 45–50 mm (frequent) or 90–100 mm (infrequent). The depth of irrigation water applied was equal to the soil water deficit (SWD) of each treatment, measured before each irrigation. Soil modification did not change the plant available water content of the soil (about 115 mm). The apparent depth of water extraction was initially different between soil management treatments but, over time, these differences disappeared. There were consistent differences between the forage species in the apparent depth of soil water extraction. Lucerne extracted water from deeper in the soil than phalaris followed by tall fescue and then perennial ryegrass. In general, the infrequently irrigated forages extracted water from deeper in the soil than did the frequently irrigated forages. The frequently irrigated treatments received slightly more water than did the infrequent treatments. The depth of water applied to the control and modified soil was similar, whereas the drained soils received more water than did the undrained treatments. There were differences between the forages in the depth of water applied, with lucerne receiving up to about 1500 mm/year and the grasses about 1100 to 1300 mm/year. Water use efficiency [kg dry matter (DM)/ha.mm] of the forages ranged from 14 to 18 kg DM/ha.mm in 2000–01 and up to 24 kg DM/ha.mm in 2001–02. The relatively high water use efficiencies were largely due to the high yields achieved, as water use was similar to that of district farms.


2020 ◽  
Vol 112 (5) ◽  
pp. 3306-3321 ◽  
Author(s):  
Upendra M. Sainju ◽  
Andrew W. Lenssen ◽  
Brett L. Allen ◽  
Jalal D. Jabro ◽  
William B. Stevens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document