The effect of grazing cattle and sheep together

1970 ◽  
Vol 10 (47) ◽  
pp. 694 ◽  
Author(s):  
D Bennett ◽  
FHW Morley ◽  
KW Clark ◽  
ML Dudzinski

The performance of sheep and cattle grazing together was compared with that of sheep grazing only with sheep and of cattle grazing only with cattle. Comparisons were made at five stocking rates over three years at the Ginninderra Experiment Station, near Canberra, A.C.T. The cattle, Aberdeen Angus steers, gained less weight in autumn and winter if grazing with sheep (Merino ewes) than did cattle grazing only with cattle. During spring, however, they grew faster and, by late spring, differences between the groups were small and not significant. Sheep grazing with cattle grew more wool, and produced more lambs with higher weaner weights, than sheep grazing only with sheep. The effect of stocking rate on animal performance varied greatly through the year. In spring and summer, gains of young cattle were not greatly affected by stocking rate, and were sometimes highest at highest stocking rates. In autumn, winter, and early spring an additional one-eighth steers per acre decreased daily gains by 0.2 kg, or even more. Older steers at highest stocking rates gained much more in spring than did those on lowest stocking rates. Stocking rate affected all attributes of sheep when grazing alone, but had little effect on sheep grazing with cattle. This study indicates that there could be substantial advantages from running cattle with sheep. The performance of sheep would be improved, and that of cattle reduced only slightly, compared with systems running the species separately. Compensatory gains in spring offer considerable benefits to cattle management, but may limit the value of practices such as supplementary feeding of cattle in winter. Similar results are likely wherever cool temperate, improved pastures are grazed at high stocking rates. Different results are likely from native pastures, and semi-arid environments.

1979 ◽  
Vol 19 (97) ◽  
pp. 140 ◽  
Author(s):  
EJ Bowen ◽  
KG Rickert

At Gayndah, south-eastern Queensland, a native Heteropogon contortus pasture, sown to fine-stem stylo (Stylosanthes guianensis var. intermedia), and invaded by red natal grass (Rhynchelytrum repens), was grazed by weaner steers from June 1 in three treatments : heavy and light put-and-take grazing for five years from 1971, and set-stocked at 1.37 animals ha-1 for two years from 1974. Weight gains in the put-and-take treatments were not significantly different. The mean annual liveweight gain was 167 kg animal-1 at a mean equivalent stocking rate of 1.47 animals ha-1. Over the same period unsown native pasture, cleared of timber, gave a gain of 62 kg animal-1 at 0.62 animals ha-1. In all seasons except summer, weight gains declined linearly with stocking rate and in 1972-73, with a mean equivalent stocking rate of 2.66 animals ha-1, the annual gain was almost halved. When equivalent stocking rates were 0.9, 0.9, 1.8 and 1.2 animals ha-1 in winter, spring, summer and autumn, the respective gains were 4, 73, 65 and 45 kg animal-1. The set-stocked treatment had a mean annual gain of 147 kg animal-1. At another site 116 km north-west of Gayndah, two paddocks of Heteropogon contortus and fine-stem stylo were set-stocked with weaners over four years. One paddock had four applications of superphosphate of 250 kg ha-1. The mean annual liveweight gains were significantly different, being 154 and 143 kg animal-1 in the fertilized and unfertilized paddocks at mean stocking rates of 0.83 and 0.74 animals ha-1, respectively. In a grazing protection experiment the density of fine-stem stylo declined exponentially with an accumulation of pasture dry matter in spring and summer. Heavy continuous grazing, an annual hay cut and an accidental fire all increased the density of fine-stem stylo. Management options to maintain the density of fine-stem stylo and the relative importance of the legume and grass to animal production are discussed.


1986 ◽  
Vol 8 (1) ◽  
pp. 46 ◽  
Author(s):  
RD Graetz

Measurements were made of the wool growth, body weight gain and diet of sheep grazing a saltbush pasture near Broken Hill, N.S.W. The experiment utilized a fenceline contrast in saltbush (Atriplex vesrcarra) density that was visible on Landsat imagery. It ran for five years (1976-1981) with a design of two pasture types by two stocking rates. Fleece weights varied from 3.9-6.0 kg/head and wool production from 0.6-2.9 kg/ha. Neither wool production per head nor bodyweight were substantially affected by stocking rate or pasture type. The composition and quality of the diets selected by sheep on both pastures were identical and of high nutritional value indicating their capability to accommodate differences in pasture composition. Pasture quality was not limiting between stocking rates or determined by the abundance of saltbush. Changes in pasture composition resulting from grazing and exclosure were small and of no significance.


1993 ◽  
Vol 33 (5) ◽  
pp. 561 ◽  
Author(s):  
CJ Gardener ◽  
MR McCaskill ◽  
JG McIvor

Native pastures dominated by Heteropogon contortus (speargrass) were sown to Stylosanthes hanzata cv. Verano in 1972, and herbage production and steer growth rates were compared with those of native pastures from 1973 to 1985. The native pastures also contained naturalised Stylosanthes humilis, but its contribution to pasture yield diminished rapidly, after infection by Colletotrichum gloeospoirioides (anthracnose) in 1973. The experiment was a factorial design of 2 pasture types (native, native plus Verano) x 2 stocking rates (0.6, 1.2 steers/ha) x 2 superphosphate treatments (nil, 300 kg/ha.year) x 2 replicates. Fertiliser application decreased the proportion of legume but had no significant effect on herbage or animal production on this comparatively fertile site (extractable P, 18 mg/kg). Annual liveweight gains at the high and low stocking rates, respectively, on the native pasture averaged 100 and 120 kg/steer. Sowing to Verano did not affect herbage yields but increased annual liveweight gains by 28 and 36 kg/steer at low and high stocking rates. The high stocking rate of 1.2 steers/ha was sustainable for the first 9 years of the experiment, when above-average rainfall was received. However, in the following 3 below-average years, there was a shift to less-desirable species, and a decline in pasture productivity. Relative to the low stocking rate, herbage production on the native pasture in the final season was reduced by 60% and on the Verano pasture by 26%. The highest annual herbage utilisation rate that appeared sustainable in the long term was about 45%, which corresponded to a utilisation rate of 30% during the growing season (about November-May). When oversown with Verano, speargrass tended to decline in favour of annual grasses, weeds, and the introduced grass Urochloa mosanzhicensis, which had been sown on an adjacent experiment. Urochloa appeared to be a more suitable companion species than speargrass for Verano.


2001 ◽  
Vol 41 (8) ◽  
pp. 1099 ◽  
Author(s):  
R. A. Waller ◽  
P. W. G. Sale ◽  
G. R. Saul ◽  
G. A. Kearney

A 4-year field experiment was carried out in south-western Victoria to determine whether tactical stocking might improve perennial ryegrass (Lolium perenne L.) persistence and prime lamb production, compared with the more common practice of year-around continuous stocking. Tactical stocking consisted of variable length summer, autumn and winter rotations and continuous stocking in spring. The 2 grazing strategies were compared on 2 contrasting pastures: an upgraded pasture, sown with newer cultivars of perennial ryegrass and subterranean clover (Trifolium subterraneum L.) with 26 kg phosphorus/ha.year, and a more typical naturalised perennial ryegrass pasture receiving 6 kg phosphorus/ha.year. Paddocks were grazed by Border Leicester x Merino ewes, which were mated to a terminal sire to lamb in September. The effects of the grazing systems and pasture treatments on herbage production and stocking rate are presented in this paper. Herbage production was similar between the treatments, but tactical stocking significantly increased herbage mass during the growing season (P<0.05) compared with continuous stocking. In spring each year, the herbage mass generally exceeded 3000 kg dry matter/ha in tactically stocked paddocks and averaged 500–900 kg dry matter/ha higher than the mass on continuously stocked paddocks. This enabled the year-round stocking rate to be increased by an average of 9% over the 4 years of the experiment. We considered that the stocking rates could not be further increased, despite the higher herbage mass in spring, as stock reduced the dry herbage to a low residual mass by the opening rains in autumn. In contrast, stocking rates averaged 51% higher on the upgraded pasture compared with the typical pasture over the 4 years of the experiment. This indicates that pasture improvement and soil fertility status have a much greater impact on productivity than changes to grazing method. However, tactical stocking was able to increase the sustainability of prime lamb production on upgraded pastures in a dry summer climate, by maintaining herbage cover on the paddocks over the summer–autumn period.


1988 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
BB Zahran ◽  
AM Holm ◽  
WR Stern ◽  
WA Loneragan

The cage method of sampling vegetation was used to estimate herbage mass and herbage consumed by sheep, grazing a pasture dominated by annual species, near Camawon, Western Australia. Using paired quadrats (2m x lm), one caged and the other open, herbage mass and herbage consumed were measured at five stocking rates on two soil types, on eight occasions between December 1983 and January 1985. The data were highly variable; nevertheless, some effects of season, soil type and stocking rate could be observed. The results showed clear seasonal trends. Some soil type x stocking rate interactions were detected during the dry periods of the year when herbage mass was low. Generally, the cage method tended to over-estimate herbage consuped. Sheep consumed approximately 119 to 116 of the available herbage at low and high stocking rates respectively when feed was plentiful; when feed was in short supply the corresponding figures were approximately 113 and 1/2. The limitations of the method are discussed and some suggestions made concerning its applicability in rangeland studies.


1993 ◽  
Vol 73 (4) ◽  
pp. 715-724 ◽  
Author(s):  
Hélène V. Petit

Twenty percent of forage farmland was devoted to seeded and native pastures in 1991. Common white clover is widely found in native pastures but ladino clover is the main legume recommended. Timothy is the most popular grass for seeded pasture and its yield is increased by N fertilization. More than 30% ladino in pasture decreases the N fertilizer requirement. High fertilization of pasture where beef steers are kept at high stocking rates and moderately fertilized pasture where beef steers are kept at low stocking rates result in similar average daily gains. Excessive steer stocking rates can result in decreased herbage production at the end of the growing season which results in decreased weight gain. However, feeding concentrate can compensate for herbage shortage and maintain weight gain of steers with a high stocking rate similar to that of unsupplemented animals on pasture with a low stocking rate. The difference in total beef production per hectare between heavily and moderately fertilized pastures is only 10% higher for the former when herbage surpluses conserved as silage and hay are fed to steers during winter. When herbage allowance is not limiting, there appears to be no advantage in supplementing grazing cattle with concentrate or protein. Key words: Pasture, grazing, dairy cattle, beef cattle, sheep


1973 ◽  
Vol 81 (2) ◽  
pp. 211-218 ◽  
Author(s):  
J. P. Langlands ◽  
I. L. Bennett

SummaryWool production and wool characteristics are reported for a 5-year period in which sheep grazed Phalaris tuberosa–Trifolium repens pastures at stocking rates ranging from 2·5 to 37·1 sheep/ha. The utilization of nutrients for maintenance and wool production were calculated over shorter periods.Maximum wool production/ha was always recorded at the highest stocking rate attained. The highest annual maximum was 111 kg clean wool/ha in 1963–4. The decline in wool production/sheep/unit increase in stocking rate was greatest during winter and the amplitude of the seasonal rhythm in wool production increased with stocking rate.At high stocking rates wool count increased, staple length and character declined, colour and handle improved, soundness tended to decline and fibre entanglement (cotting) to increase particularly during drought. Live-weight gain/sheep also declined with stocking rate, the rate of decline being greatest during drought. Maximum live-weight change/ha was attained at a lower stocking rate than maximum wool production/ha.The maintenance requirement of grazing sheep was estimated to be 58·3 kcal metabolizable energy/day/kg live weight and did not vary consistently with stocking rate. The value was 79% greater than the requirements for penned sheep estimated from fasting heat production.Efficiency of wool production was defined as wool grown/100 g digestible organic matter intake (ED) and as wool grown/100 g nitrogen intake (EN). EN declined linearly with increasing stocking rate but the intercepts differed between months, and were least in late winter and early spring. En declined with stocking rate in winter and increased during summer. At low stocking rates, ED showed some variation throughout the year but this was much greater at high stocking rates.


1987 ◽  
Vol 27 (3) ◽  
pp. 389 ◽  
Author(s):  
PM Dowling ◽  
GG Robinson ◽  
RD Murison

Herbage mass on offer, botanical composition and livestock production of sheep grazing 3 types of pastures developed by 'aerial' methods at 3 stocking rates (5, 7.5 and 10 sheep/ha) were compared in a 3-year grazing trial at Glen Innes, N.S.W., during 1972-75. The pastures were: resident grass-white clover (F), resident pasture plus surface sown grass (SF), and as for SF but with herbicide application prior to surface sowing ofgrass (HSF). All pasture treatments had equivalent rates of superphosphate applied. The sowing effect and the herbicide effect were statistically analysed by contrasting the pasture treatments: SF-F, HSF-SF, respectively. The SF-F contrast showed that herbage on offer of the sown grasses on the SF pasture was greater, and this difference increased with time. Legume herbage on offer was greater on the SF pasture though it declined with time, and exhibited seasonal variation. The HSF-SF contrast indicated that herbage on offer: of sown grass was greater on the HSF pasture and increased with time; of the herbs component was greater on the HSF pasture during the initial and final stages of the experiment; oflegume was greater on the HSF pasture but the difference declined with time; of resident grass was greater on the SF pasture but the difference declined with time; and of dead material was consistently greater on the SF pasture. The contrasts for the resident grasses and dead material components varied seasonally. Herbage on offer of all pasture components declined as stocking rate was increased. Patterns of decline varied with pasture component and pasture treatment. Mean sheep liveweights were influenced by pasture treatment, with sheep on the HSF pasture being the heaviest, and those on the F pasture, the lightest. Increasing stocking rate decreased mean sheep liveweights on pastures F and SF but increased mean sheep liveweights on the HSF pasture. Liveweight declines were least for sheep grazing the F and SF pastures and liveweight increases were greatest on the HSF pasture during late summer-autumn. Greasy wool production per sheep was greatest on the HSF pasture during 1972-73 but thereafter there were no significant differences between treatments. We conclude that, although animal production was increased by the introduction of sown grasses in the short term, the level of superiority was not as great as expected. Changes in management strategies may be required if the greater production achieved is to be sustained.


Rangifer ◽  
2000 ◽  
Vol 20 (2-3) ◽  
pp. 141 ◽  
Author(s):  
R. H. Behnke

Equilibrium grazing systems are characterised by climatic stability that results in predictable primary production. Non-equilibrium grazing systems receive low and erratic rainfall that produces unpredictable fluctuations in forage supplies. In semi-arid Africa, these two types of environment present livestock owners with very different management problems. Identifying and maintaining optimal stocking rates is useful in equilibrium systems because livestock reproduce and produce at a rate determined by the availability of feed, which is an inverse function of stock density. The only problem is to determine what stocking rate is optimal. The correct stocking rate for a grazing system will vary depending on the production strategy and the social and economic circumstances of the rangeland user - there is no single, biologically predetermined optimum density. Variable rainfall complicates the picture in non-equilibrium systems. Set stocking rates of any kind have little value if fluctuation in rainfall has a stronger effect than animal numbers on the abundance of forage. More useful in such an environment is the ability to adjust stocking rates rapidly to track sudden changes in feed availability. In semi-arid Africa, the distinction between equilibrium and non-equilibrium systems hinges on the reliability of rainfall. In northern latitudes, at least three primary variables important for plant growth and the survival of herbivores must be considered: rainfall, snow cover and temperature. It is probably not useful to consider arctic grazing systems as equilibrium systems; on the other hand, the non-equilibrium models developed in hot semi-arid environments do not capture the range of complexity which may be an inherent feature of plant-herbivore dynamics on the mountain and tundra pastures where reindeer are herded or hunted.


Author(s):  
S. Ates ◽  
H.E. Brown ◽  
R.J. Lucas ◽  
M.C. Smith ◽  
G.R. Edwards

Liveweight gain of ewes and lambs and subterranean clover reproduction were measured in tall fescuesubterranean clover pastures on a dry, stony soil stocked at 10 (low) and 20 (high) ewes and their twin lambs/ha over 46 days in spring 2005. Lambs grew at 374 g/day at the low stocking rate and 307 g/day at the high stocking rate, meaning final liveweight was 3.1 kg higher at the low stocking rate. However, lamb liveweight gain/ha/ day was greater at the high (12.3 kg/ha/day) than the low (7.5 kg/ha/day) stocking rate. Ewes gained 2.2 kg at the low stocking rate and lost 4.9 kg at the high stocking rate, with most liveweight loss occurring in the second half of the grazing period when moisture stress restricted subterranean clover growth. There were 62% fewer burrs/ m2 at the high than the low stocking rate. For both stocking rates, inadequate seed production resulted in inadequate seedling numbers in the following autumn (285 and 223 seedlings/m2 at low and high stocking rate, respectively). The results show high lamb liveweight gains can be obtained on subterranean clover pastures, but, in a drier than average spring, selective grazing of the clover may result in poor subterranean clover seed production and reduced seedling numbers in the following the autumn. Keywords: liveweight gain, seed production, sheep grazing, stocking rate, subterranean clover, tall fescue


Sign in / Sign up

Export Citation Format

Share Document