Regeneration of annual winter legumes at Tamworth, New South Wales

1974 ◽  
Vol 14 (66) ◽  
pp. 57 ◽  
Author(s):  
MW Hagon

The seed production and regeneration of a range of naturalized and introduced cultivars of annual clovers and medics was studied at Tamworth, New South Wales, between 1971 and 1973. Seed production was correlated with maturity grading within species only when moisture stress occurred in late spring. The proportion of seed lost as summer seedlings and the proportion of unrecovered seed were greater the lower the level of hardseededness. A greater proportion of unrecovered seed was recorded for those cultivars which bore their burrs at the soil surface. As a group the medics had a higher proportion of residual hard seeds than did the clovers. The results are discussed in relation to the likely persistence of improved cultivars compared to the successful persistence of the naturalized medics and clovers in the Tamworth district.

1996 ◽  
Vol 36 (3) ◽  
pp. 299 ◽  
Author(s):  
TS Andrews ◽  
RDB Whalley ◽  
CE Jones

Inputs and losses from Giant Parramatta grass [GPG, Sporobolus indicus (L.) R. Br. var. major (Buse) Baaijens] soil seed banks were quantified on the North Coast of New South Wales. Monthly potential seed production and actual seed fall was estimated at Valla during 1991-92. Total potential production was >668 000 seeds/m2 for the season, while seed fall was >146000 seeds/m2. Seed fall >10000 seeds/m2.month was recorded from January until May, with further seed falls recorded in June and July. The impact of seed production on seed banks was assessed by estimating seed banks in the seed production quadrats before and after seed fall. Seed banks in 4 of the 6 sites decreased in year 2, although seed numbers at 1 damp site increased markedly. Defoliation from mid-December until February, April or June prevented seed production, reducing seed banks by 34% over 7 months. Seed banks in undefoliated plots increased by 3300 seeds/m2, although seed fall was estimated at >114 000 seeds/m2. Emergence of GPG seedlings from artificially established and naturally occurring, persistent seed banks was recorded for 3 years from bare and vegetated treatment plots. Sown seeds showed high levels of innate dormancy and only 4% of seeds emerged when sown immediately after collection. Longer storage of seeds after collection resulted in more seedlings emerging. Estimates of persistent seed banks ranged from 1650 to about 21260 seeds/m2. Most seedlings emerged in spring or autumn and this was correlated with rainfall but not with ambient temperatures. Rates of seed bank decline in both bare and vegetated treatment plots was estimated by fitting exponential decay curves to seed bank estimates. Assuming no further seed inputs, it was estimated that it would take about 3 and 5 years, respectively, for seed banks to decline to 150 seeds/m2 in bare and vegetated treatments.


1993 ◽  
Vol 33 (3) ◽  
pp. 299 ◽  
Author(s):  
GM Lodge

Plots sown in 1983 were used to examine the seed production and reserves (residual hardseeds) of 15 annual legumes over 5 years at Tamworth in northern New South Wales. Seed production characteristics were measured in 1983 for these annuals, and for 6 perennial legumes. After the annuals had set seed in 1983, an area of the plots was sprayed to prevent flowering in subsequent years, and the rates of decline in seed reserves were compared with those from areas that seeded annually. Seed yields of the perennials were often significantly lower than those of the annuals except Trifolium glomeratum. Seed yields of T. subterraneum var. subterraneum cvv. Seaton Park and Woogenellup were significantly higher than those of cv. Nungarin and T. subterrarzeum var. brachycalycinum cv. Clare. Seed numbers were lowest for Medicago scutellata cv. Sava among the annual medics, and for Nungarin among subterranean clovers. There was little relationship between the mean number of seeds produced from 1983-86 and maturity grading, and between seed numbers and relative dry matter yield. Seed reserves decreased over 5 years by more than 90% in the sprayed treatments of all species. This decrease was not continuous, with the largest declines occurring from December 1983 to August 1984. In the sprayed treatments of Seaton Park, Woogenellup, and Clare, and in both treatments of Astragalus hamosus cv. Ioman, Vicia dasycarpa var. villosa cv. Namoi, and T. hirtum cv. Hykon, none of the original 1983 seed was recovered in 1987. For the annual medics and Nungarin, the number of residual hardseeds in the sprayed treatments in 1987 was about 3-5% of the seed produced in 1983. From 1983 to 1987, seed numbers in the unsprayed treatments declined by 7040% for the annual medics and by 85-95% for Seaton Park, Woogenellup, and Clare. Long-term persistence of annual medics and Nungarin depended on seed production in most years and the maintenance of a high number of residual hardseeds in the soil. In contrast, the mid- and late-maturing subterranean clovers Woogenellup and Clare had low seed reserves and were dependent on seed production in most years for their continued regeneration.


1992 ◽  
Vol 32 (4) ◽  
pp. 447 ◽  
Author(s):  
G Sweeney ◽  
RS Jessop ◽  
H Harris

The yields and yield structure of cultivars of triticales and bread wheats (with a range of phasic development patterns in both species) were compared in 2 field experiments at Narrabri in northern New South Wales. The experiments were performed on a grey cracking clay soil with irrigation to prevent severe moisture stress. Triticales, both early and midseason types, appeared to have reached yield parity with well-adapted wheat varieties. Meaned over the 2 experiments and all sowings, the triticales yields were 19% greater than the bread wheats. Triticales were generally superior to wheat in all components of yield of the spike (1000-grain weight, grain number/spikelet and spikelet number/spike), whilst the wheats produced more spikes per unit area. The triticales also had higher harvest indices than the wheats. The results are discussed in relation to the overall adaptability of triticale for Australian conditions.


1963 ◽  
Vol 3 (9) ◽  
pp. 114 ◽  
Author(s):  
JD Colwell

The effects of the different sowing rates of 20, 40, and 60 lb of seed an acre on the yield, bushel weight, composition, and response to fertilizers, of wheat grown on soils of high fertility has been studied in seven field experiments in the wheat-belt of southern New South Wales. Seasonal conditions ranged from drought to lush growing conditions and in addition one experiment was irrigated to reduce the effects of moisture stress on plant growth. Yields ranged from 10 to 70 bushels of wheat an acre and fertilizer treatments gave both positive and negative effects. For the wide range of growth conditions, variation in seeding rate had only small and non-significant effects on grain yields, with the exception of the irrigated experiment where a consistent trend indicated the need for higher seeding rates for maximum yield. Effects of the seeding rates on grain size and composition and fertilizer response, were negligible. Losses in potential grain yield, caused by the exhaustion of soil moisture reserves by excessive vegetative growth of high fertility soils before grain development has been completed, does not seem to be reduced appreciably by the use of low seeding rates.


1995 ◽  
Vol 46 (1) ◽  
pp. 209 ◽  
Author(s):  
KH Kreeb ◽  
RDB Whalley ◽  
JL Charley

The characteristics of the soil, vegetation and groundwater at a dryland salinity site on Miramoona, a property near Walcha on the Northern Tablelands of New South Wales, were investigated. Soil parameters measured at 23 points along a 200 m transect were highly correlated with the pattern of vegetation. Of overriding significance was soil pH, which varied from a high of over 10 on bare areas delineated by Critesion marinum and Cynodon dactylon to a low of less than 5 on grazing land supporting the growth of a wide range of pasture species. The bare areas were characterized by alkalinity. While they were sodic at all depths measured, they were only marginally saline and then only at the soil surface. The chemical composition of the groundwater collected from three piezometer tubes varied quite markedly over the site. It is hypothesized that the presence of alkaline bare areas on the Northern Tablelands is not a new problem, but rather the natural result of alternating wet and dry periods which have induced accumulation of carbonates and bicarbonates of the alkali cations, notably sodium. Drainage of the original perched swamps by the early landholders, tree clearing and the grazing of domestic livestock would have accelerated the process since European settlement. However, tree planting would appear unlikely to have any impact on the reclamation process in the short term. A more viable option would be the recreation of the original swamps in suitable situations, although this solution would create problems for grazing management.


2003 ◽  
Vol 54 (6) ◽  
pp. 621 ◽  
Author(s):  
M. R. Gardener ◽  
R. D. B. Whalley ◽  
B. M. Sindel

This is the second in a series of papers investigating the ecology of Nassella neesiana (Trin. & Rupr.) Barkworth (Chilean needle grass) in pastures on the Northern Tablelands of New South Wales. The reasons for its success as a pasture weed are discussed. Nassella neesiana has a large and persistent soil seedbank. After 3 years without seed input, the seedbank declined from 4676 to 1323 seeds/m2. When an exponential decay curve was fitted to the data it was predicted that the seedbank would reach 10 seeds/m2 after 12.4 years. When seed production was large in 1996, 41.6% of seeds produced were incorporated into the seedbank, whereas in 1995 and 1997 the smaller seed production was only sufficient to maintain seedbank numbers. Furthermore, it is likely that the seedbank numbers were underestimated because they did not include basal cleistogenes. In a separate experiment, basal cleistogenes were found to contribute a further 20% to the seedbank.A small proportion of the viable seeds in a natural seedbank emerged from bare ground over 2 years. Seedling survival was high, with 78% of those germinating from bare ground surviving for at least 20 months. Several experiments were designed to investigate the mechanisms of this germination and survival. It appears that the seeds of N. neesiana have an after-ripening requirement of between 3 months and 1 year for maximum germination. Lemma removal from seeds stored for 8 months increased germination from 49 to 82%. The rate of germination and the total percentage of seeds germinating also increased with time of burial in the ground. Of seeds that had been buried for 2 years, 90% germinated after laboratory incubation compared with 48% of seeds stored in the laboratory as controls. Depth of seed burial appears to affect seedling emergence and survival. A smaller number of seedlings emerged from 0–10 mm and they had lower survival than those from seed buried at 10–20 mm.


2003 ◽  
Vol 54 (6) ◽  
pp. 613 ◽  
Author(s):  
M. R. Gardener ◽  
R. D. B. Whalley ◽  
B. M. Sindel

Nassella neesiana (Trin. & Rupr.) Barkworth (Chilean needle grass) originated in South America and is now a widespread weed in pastures in south-eastern Australia. To date, little research on the biology of N.�neesiana has been undertaken in Australia. This study investigated several aspects of the biology of N. neesiana in pastures on the Northern Tablelands of New South Wales. The main flowering period for N. neesiana in Australia was shown to extend from November to February and is similar to that in South America. Potential for production of panicle seeds was large and varied from 1584 seeds/m2 in 1995 to 22 203 seeds/m2 in 1996 as a result of changes in the density of flowering tillers per unit area. Nassella neesiana produced a further 7.2 cleistogenes (hidden seeds in the flower stem) on average per tiller. Hence, total potential seed production (panicle seeds and cleistogenes) was 28 282 and 8036 seeds/m2 in 1996 and 1997, with the cleistogenes accounting for 21.5 and 26.1% of the total respectively. Furthermore, the production of cleistogenes was not affected by clipping flowering tillers at 3 different heights. Three possible dispersal mechanisms of N. neesiana seeds were investigated. Adherence of seeds to the wool appeared to be the most effective. Twenty-five per cent of seeds that were picked up naturally in the wool of sheep after grazing in a paddock of N. neesiana, remained after 5 months. Shearing just before seed set reduced the number of seeds adhering to the wool. An average of 1.7% of panicle seeds and 5.3% of cleistogenes fed to Angus steers passed through the animal intact within 4 days, but <50% of these seeds were viable. The majority of seeds recovered from a wind dispersal experiment were within 1 m of the parent plant and the furthermost seed was 2.8 m away. The implications of these results for management are discussed.


1992 ◽  
Vol 32 (3) ◽  
pp. 345 ◽  
Author(s):  
JL Cooper

Field experiments over 2 seasons in the Macquarie Valley of central New South Wales compared yields under irrigation of 5 wheat varieties with a wide range of maturities sown from 8 April to 27 August.Early maturity wheats (Yecora and Avocet) sown prior to 6 May suffered frost damage, while the winter wheats (WW33G and Burgas) sown after 29 July were not fully vernalised and most tillers failed to produce heads. There was a curvilinear relation between time of sowing and grain yield. Excluding the treatments which suffered frost damage, the earliest time of sowing (8 April) produced the highest yield, with a 6.4% yield reduction between 8 April and 8 May. The yield reduction increased with later sowing date: 13.3, 19.3, and 26.5% during May, June, and July. Anthesis in mid September produced the highest yields for all varieties. Treatments which flowered earlier than mid September suffered frost damage. For each day later than 15 September that anthesis occurred, the mean yield fell by 1.3% or about 68 kg/ha.day. Date of anthesis had no detectable effect on the rate of individual grain growth (1.3 mg/grain.day), but the later anthesis occurred, the shorter the duration of grain development and the lower the final grain weight. Rising temperatures, not moisture stress, seems to be the factor causing the decline in yield with late sowing. This experiment was irrigated to eliminate moisture stress but the decline in yield was similar to that reported for dryland crops.


Soil Research ◽  
2004 ◽  
Vol 42 (6) ◽  
pp. 587 ◽  
Author(s):  
Mark A. Rosicky ◽  
Leigh A. Sullivan ◽  
Peter G. Slavich ◽  
Mike Hughes

Acid sulfate soil (ASS) scalds are persistently bare areas of land, occurring in the coastal backswamps of New South Wales (NSW), Australia. This study aims to understand why particular areas become ASS scalds, while adjacent areas remain vegetated. Some important soil parameters are compared and field observations are summarised. Soil core sampling in both ASS-scalded land and surrounding areas of permanently vegetated paddocks has demonstrated similar pyrite concentrations and depth occurrence, soil salinity, and soil acidity (pH). As conditions are similar beneath both vegetated and non-vegetated land, there must be some additional factors influencing which areas become denuded. Several disparate (usually human-induced) events were found to cause initial loss of vegetative cover. Once the soil is bare, surface evaporation causes toxic solutes to build up quickly at the soil surface and ASS scalding is perpetuated. Some of the intervening events include fire, flood, flood-scouring, deliberate topsoil removal, surface pyrite oxidation, saltwater inundation of freshwater paddocks, saltwater exclusion from saltmarsh or mangroves, changes to the vegetation regimes, excessive vehicular traffic, and over-grazing. Backswamp management needs to ensure that land underlain by shallow pyritic layers (or with soil-water that is enriched with the toxic by-products of pyrite oxidation) is not laid bare by accident or design. Similar soil chemical conditions underlying both ASS scalds and the surrounding permanently vegetated paddocks suggest that much larger areas are potentially at risk of ASS scalding.


2019 ◽  
Vol 70 (4) ◽  
pp. 493
Author(s):  
William Higgisson ◽  
Sue Briggs ◽  
Fiona Dyer

Nitre goosefoot (Chenopodium nitrariaceum (F.Muell.) is a woody shrub that occurs at the edges of floodplains and other intermittently flooded areas across the Murray–Darling Basin. No studies have been conducted on the hydrological requirements of nitre goosefoot, and the species is not considered in watering requirements of floodplain species of the Murray–Darling Basin. This study investigated the effects of simulated rainfall and depth and duration of experimental flooding on mortality, leaf production, biomass and seed production of nitre goosefoot. Nitre goosefoot plants were grown from seeds collected near Hillston, New South Wales, Australia. The plants were subjected to the following 14 hydrological treatments: dry (no water applied), rainfall (simulating rainfall conditions at Hillston) and 12 combinations of three water depths (10cm, 50cm, 75cm) with four durations of inundation (5 days, 10 days, 20 days, 40 days). The study found that nitre goosefoot plants survived flooding, providing plants were not totally submerged, leaf production increased during flooding and after drawdown, and leaf production, biomass and seeding were highest under shallow flooding for approximately 1 month. The results of the study allow the hydrological requirements of nitre goosefoot to be considered in environmental watering programs.


Sign in / Sign up

Export Citation Format

Share Document