Evaluation of legumes for use in short-term leys and natural pastures on the northern slopes of New South Wales

1981 ◽  
Vol 21 (112) ◽  
pp. 485 ◽  
Author(s):  
KA Archer

A range of temperate legumes was evaluated for winter and spring production for use as either short-term ley pastures, or, when sown from the air, as introduced species into natural pastures on the higher northern slopes of New South Wales. The species were evaluated with and without the annual application of a compound phosphorus and sulfur fertilizer in four experiments from 1975 to 1978. Haifa white clover (Trifolium repens cv. Haifa) was generally the most productive and persistent species with dry matter production in winter and spring ranging from 21 30 to 3600 kg/ha when sown into prepared seedbeds. In natural pastures with applied fertilizer, yields of Haifa ranged from 100 kg/ha in a dry year to 5000 kg/ha. Other persistent species in both ley and natural pastures were Namoi woolly pod vetch (Vicia dasycarpa cv. Namoi) (1110-3520 kg/ha and 470-3350 kg/ha, respectively) and Hunter River lucerne (Medicago sativa cv. Hunter River) (1290-2500 kg/ha and 480-2350 kg/ha, respectively). These were the only species to establish themselves satisfactorily in the natural pastures. Other species that showed good potential for ley pastures were Hamua red clover (T. pratense cv. Grasslands Hamua), Clare subterranean clover (T. subterraneum cv. Clare) and Kondinin rose clover (T. hirtum cv. Kondinin), but further evaluation of these legumes is required. The barrel medics were productive in their establishment year averaging 2560 kg/ha dry matter but mean yields in subsequent years were less than 100 kg/ha due to poor regeneration. The natural pastures needed fertilizer to ensure adequate levels of production from the sown legumes. In the ley pastures, a response occurred only in the second year of one experiment. The natural species did not respond to fertilizer. It is concluded that Haifa white clover, woolly pod vetch and lucerne offer significant potential for use in both ley and natural pastures on the north-western slopes

2004 ◽  
Vol 44 (12) ◽  
pp. 1165 ◽  
Author(s):  
A. M. Bowman ◽  
W. Smith ◽  
M. B. Peoples ◽  
J. Brockwell

Total productivity and legume nitrogen fixation (N2 fixation) in dryland pastures were examined in a 2 year study (1999–2001) on 118 farms in central-western New South Wales. Pasture exclosure cages, placed at 217 on-farm sites, were harvested on 7 occasions and the foliage hand-sorted according to species in order to measure shoot dry matter (DM). The separated legume shoot material collected in spring 1999 (52 different legume samples) and 2000 (76 different legume samples) from a subset of representative pastures (41 cages on 28 different farms in 1999, 32 cages on 25 different farms in 2000) was also analysed for concentration of nitrogen (%N) and 15N natural abundance. These data were subsequently used to calculate the proportion of the legume shoot N derived from atmospheric N (%Ndfa), comparative measures of the relative efficiency of N2 fixation (kg N fixed/t DM accumulated) and the amounts of shoot N fixed (kg N/ha). The survey encompassed 8 common pasture types, and 5 others that were less common, ranging from native perennial grass pastures with little legume content to lucerne (Medicago sativa L.) pastures with and without companion clovers. Fifteen legume species were found in the pastures, some only occasionally. Lucerne and white clover (Trifolium repens L.) were the only perennials. Mean spring estimates of %Ndfa were similar in 1999 and 2000 for lucerne (72 and 81%, respectively), rose clover (T. hirtum All., 82 and 77%) and annual medics (Medicago spp., 89 and 86%). For the remaining 12 legume species, measures of %Ndfa ranged from 64 to 95% and averaged 83%. Shoot %N contents were greater for lucerne than for the other 14 legumes and this was reflected in the comparative measures of N2 fixation which ranged from 14.5 kg N/t DM for rose clover to 25.7 kg N/t DM for lucerne in 2000. The most productive pasture type comprised lucerne plus balansa clover [T. michelianum Savi var. balansae (Boiss.) Azn.], white clover or arrowleaf clover (T. vesiculosum Savi), but all pasture types that contained lucerne were highly productive. Spring was the most productive season and summer the least. Lucerne was overwhelmingly the most productive legume and was responsible for >83% of the fixed N in those pastures that contained both lucerne and other legumes. Lucerne productivity was approximately uniform throughout the year whereas, for other pastures, especially those based on rose clover or subterranean clover (T. subterraneum L.), there were sharp peaks in spring and little or no dry matter production over summer. The presence of lucerne in pastures significantly (P<0.05) reduced broadleaf weeds. It was concluded that, where there are requirements in central-western New South Wales agriculture for uniform forage production throughout the year and a high input of fixed N, lucerne is substantially superior to other species.


1975 ◽  
Vol 15 (77) ◽  
pp. 795 ◽  
Author(s):  
JA Thompson

A range of temperate annual and perennial legumes, naturalized or commonly sown in the area, was examined at three field sites in low fertility soils derived from granite on the south western slopes of the New England Region, New South Wales. They were compared over a four year period in terms of their persistence, dry matter and nitrogen production and their compatibility with associated temperate perennial grasses, The response of sown grass to nitrogen fertilizer application was also examined in the absence of legume. Ten legumes were examined at one site and six of these at the other two sites. In general, nitrogen yields were ranked similarly to total dry matter yields of all treatments, including grasses in the absence of legume. However, the legumes were ranked differently in terms of productivity of the legume component and productivity of associated grass. At all sites lucerne gave the highest yields of total dry matter and of legume and the lowest yield and persistence of associated grass-comparable to grass growing in the absence of legume or applied nitrogen. Subterranean clover was ranked second or third in total dry matter yield, depending on site, but provided the highest yield of associated grasscomparable to grass receiving high levels of applied nitrogen. Under this legume soil nitrogen levels tended to be highest. Rose clover, sown at one site only, yielded more legume dry matter than subterranean clover but grass yield was comparable to that with lucerne. The results suggest that subterranean clover is the superior legume for successful mixed sowings although inclusion of white clover could be justified. Lucerne appears to be best sown as a pure sward.


1971 ◽  
Vol 11 (50) ◽  
pp. 307 ◽  
Author(s):  
GJ Murtagh

The effectiveness of chemical seedbed preparation for sod-sown oats was studied using varying intervals between spraying and sowing. Four herbicides were compared in a second experiment. Both experiments were conducted on paspalum (Paspalum dilatatum) dominant pastures on red basaltic soil on the North Coast of New South Wales. Herbicides were most effective when applied at 6.7 kg acid equivalent a hectare. At this rate, the highest yields of dry matter and nitrogen were obtained when there was a three-week interval and considerably less when there was no interval. A mixture of 2,2-DPA (2,2-dichloropropionic acid) and amitrole (3-amino-1,2,4-triazole) was more effective than 2,2-DPA alone with a three-week spraying interval but there was no difference with a six-week interval. Both amitrole and a mixture of amitrole and ammonium thiocyanate were ineffective for chemical seedbed preparation on paspalum pastures;


1994 ◽  
Vol 34 (4) ◽  
pp. 449 ◽  
Author(s):  
RD FitzGerald

A range of pasture legumes was either broadcast or drilled into native grass pastures on the North-west Slopes of New South Wales to identify legumes that would persist in that environment and improve the quality of winter pastures based on native grasses. There were 2 experiments conducted over 12 sites. In the first, sites were selected to permit identification of effects of altitude and 2 soil types on legume adaptation. In the second, the lower altitude range was extended and a wider range of soil types was sampled. Subterranean clover (Trifolium subterraneum L.) was the most persistent and productive species, with cultivar performance varying with altitude. At the lowest altitude (340 m) the early-maturing cv. Dalkeith was the most productive, and at 500-600 m there was little difference between the tested cultivars. Stand density, herbage yield, and seed yield all declined as altitude increased, but the decline was greater with earlier maturing cultivars than with the later maturing cv. Woogenellup White clover (T. repens cv. Haifa) established poorly in native grass swards, but plants that did establish persisted during favourable seasons at higher altitudes. Herbage yields of woolly pod vetch (Vicia dasycarpa cv. Namoi) and rose clover (T. hirtum cv. Hykon) occasionally exceeded yield of subterranean clover at some lower altitude sites, but those species failed to persist at other sites where grazing management may have been unsuitable. Barrel medic (Medicago truncatula) established satisfactorily but did not persist on the more acidic soils (pH <6.0). Both drilling and broadcasting establishment techniques produced satisfactory legume stands. Legume plant density was generally greater on heavier soils of basaltic origin than on lighter soils of rhyolitic origin.


2002 ◽  
Vol 42 (1) ◽  
pp. 15 ◽  
Author(s):  
D. R. Kemp ◽  
D. L. Michalk ◽  
M. Goodacre

Seven experiments were established across a range of environments (latitude 33°S) in central New South Wales to evaluate 52 legume cultivars and lines against currently recommended cultivars. Plots were grazed by either sheep or cattle after each harvest. Criteria for inclusion were that lines were either commercially available or in the process of being registered. Three experiments also included chicory. Sites had from 600 to 900 mm annual rainfall and were at altitudes of 440–1000 m. The 4-year program included the dry summer of 1990–91. White clover and subterranean clover were the most productive species over time. Among subterranean clovers, the subspecies subterraneum cultivars were more productive than the yanninicum or brachycalycinum subspecies. Other species such as balansa, Persian, strawberry, red and crimson clovers, lotus major and murex medic were more variable in production. These legumes often grew well in the establishment year, but failed to persist. Lucerne was in general, not as productive as white or subterranean clover. Caucasian clover and yellow serradella should be evaluated further as conclusive judgements could not be formed. Chicory was often the most productive species in the experiments, especially over the warmer 6 months of the year. It persisted under a 6-week harvest regime and during the drought year. The newer subterranean clover cultivars, Leura, Goulburn and Denmark all exceeded the production from the previously recommended cultivars, Woogenellup and Karridale, even though no major disease was evident in the later group. The lines 89820D and 89841E were sufficiently productive to warrant further evaluation and possible development as cultivars. In contrast, while Huia, Tahora, Bonadino and Tamar were often as productive as the recommended white clover cultivar Haifa, they were not consistently better. Where summer rainfall occurs and the annual rainfall exceeds 650 mm, the greater potential yield of white clover compared with subterranean clover justifies its use. However, no white clover cultivars survived the summer drought in 1990–91 as intact plants. Further work is needed to develop more drought-tolerant cultivars.


1986 ◽  
Vol 26 (6) ◽  
pp. 761 ◽  
Author(s):  
AM Grieve ◽  
E Dunford ◽  
D Marston ◽  
RE Martin ◽  
P Slavich

A physical model was used to assess the effects of surface waterlogging and soil salinity on the productivity of winter cereals and irrigated dairy pastures on irrigation farms in the Berriquin and Wakool Irrigation Districts of the Murray Valley region of New South Wales. Parameters describing the physical properties of major soil types were combined with statistically derived estimates of rainfall excess over evapotranspiration to establish the incidence of waterlogging. Soils predisposed to waterlogging occupy 150000 ha of Berriquin District (45% of District) and 24 800 ha of Wakool District (73%). Estimates of yield losses from waterlogging ranged from 12.5% in annual subterranean clover-based pastures, 20% in winter cereals, to 25% for perennial ryegrass-white clover pastures. The relationships between yield and soil salinity were determined for barley, wheat, white clover, subterranean clover, and irrigated annual and perennial pastures growing under existing management practices in shallow watertable areas of the 2 Districts. Response functions were applied to soil salinity frequency distributions to derive production loss coefficients. Surveys showed that average soil salinities were lower in Berriquin than in Wakool. In 1984, 43% the soils in shallow watertable areas of Berriquin could be classed as saline, whereas, in 1982 the corresponding figure for Wakool was 72%. A further survey taken in 1984, 2 years after the inception of a deep drainage scheme, showed that saline soils in Wakool had decreased to 46% of the total area.We assessed economic losses associated with soil salinity and waterlogging by applying the derived loss coefficients to achievable yields for known production areas. Total annual losses for the 2 Districts exceeded $A13 million, or 16% of the 1984 value of the District's agricultural production. This figure underestimates real losses because we excluded livestock enterprises other than dairying, as well as summer cropping, from the study. Losses due to waterlogging ($A10 million overall) were more serious than those due to soil salinity (nearly $A4 million), particularly in Berriquin where shallow watertables were less extensive. In Wakool, 2 years' operation of the deep drainage scheme reduced losses due to soil salinity by $A750 000.Thus surface waterlogging and soil salinity cause serious economic losses in the irrigated areas of southern New South Wales. Research into appropriate techniques for on-farm irrigation management may reduce these losses, and delay further development of shallow watertables and soil salinisation, with sub of stantial economic and environmental benefits.


1991 ◽  
Vol 31 (1) ◽  
pp. 51 ◽  
Author(s):  
MJ Hill

Sirosa phalaris, WL5 15 lucerne, Haifa white clover and Seaton Park subterranean clover were grown in monocultures and binary mixtures on a cracking clay soil and cut at 4- and 8-week intervals over 3 growing seasons at Scone, New South Wales (32�S.). The plots were given supplementary irrigation between mid April and November to prevent water deficits. The deep-rooted perennials dominated mixtures under infrequent cutting, with cumulative dry matter yields for the growing season reaching 11 t/ha for lucerne-based mixtures. Frequent defoliation increased the contribution of the clovers in mixtures, and mixtures and monocultures containing clovers were more productive than other plots in winter, 1986. Frequent defoliation reduced the vigour and density of lucerne, resulting in balanced mixtures with phalaris and subterranean clover in the third year. Only lucerne plots contributed large amounts of dry matter yield (up to 4 t/ha) between December and April. Regeneration of subterranean clover from seedlings, and white clover from seedlings or stolons, was better in clover-only plots than in mixtures with phalaris. The growth of mixtures in response to mean daily air temperature in spring could be divided into 2 distinct patterns, with growth peaking at about 15�C for determinate (annual or dormant) mixtures, and at about 18�C for lucerne mixtures and pure white clover. In autumn, growth patterns were determined by the method of regeneration (i.e. by seedings or dormant crowns).


1962 ◽  
Vol 2 (7) ◽  
pp. 228 ◽  
Author(s):  
CR Kleinig ◽  
J Loveday

The low availability of zinc on a number of calcareous grey and brown soils of heavy texture with pH>8, in the Coleambally Irrigation and Balranald areas of New South Wales, resulted in marked deficient symptoms in, and responses to zinc by, Bacchus Marsh subterranean clover (Trifolium subterranean L.), grown on these soils. An interaction between zinc and manganese occurred but there was no yield advantage in applying manganese in place of, or together with, zinc. Healthy subterranean clover grew on the surface soil (0-4 in.) of Yooroobla clay, a gilgai puff, but plants on the subsoil, which is exposed when the soil is leveled for irrigation, were extremely, zinc deficient. The pH of the subsoil is generally about 0.5 units higher than that of the surface soil. Legume species and strains differed in their response to zinc. Ladino white clover (Trifolium repens L.) and Clare subterranean clover responded less to applied zinc than Bacchus Marsh subterranean clover, and barrel medic 173 (Medicago tribuloides Desr.) responded less than Ladino white clover. When no zinc was applied barrel medic 173 yielded better than Ladino white clover, and Ladino white clover and Clare subterranean clover better than Bacchus Marsh subterranean clover.


1973 ◽  
Vol 13 (64) ◽  
pp. 575 ◽  
Author(s):  
EC Wolfe ◽  
A Lazenby

The development of an intermittently grazed phalaris-white clover pasture was studied from 1967 to 1970 following factorial annual applications of nitrogen fertilizer (0, 56, 11 2 kg N ha-1) and superphosphate (0, 188, 375 kg ha-1) onto a previously unfertilized site near Armidale, New South Wales. Each year superphosphate increased annual yields of phalaris, clover and total pasture. The response to superphosphate of phalaris was mainly linear, but in the final year of the experiment the yield of clover was greater at the intermediate rate (SP188) than at SP375. Nitrogen increased annual dry matter yields of phalaris and total pasture only in the presence of superphosphate. Clover growth was not suppressed by nitrogen fertilizer until the final year, when total pasture yields were not increased by nitrogen. In the absence of applied nitrogen, pastures on the SP375 treatment were clover-dominant in 1967 and 1968 but strongly grass-dominant in 1970; at SP188, pastures remained clover-dominant after the establishment year. The application of up to 112 kg N ha-1 year -1 reduced the intensity of the clover-dominant phase at SP, and circumvented clover-dominance at SP188. Grass-white clover relationships during pasture development are discussed in relation to the prevention of cattle bloat.


1996 ◽  
Vol 36 (3) ◽  
pp. 299 ◽  
Author(s):  
TS Andrews ◽  
RDB Whalley ◽  
CE Jones

Inputs and losses from Giant Parramatta grass [GPG, Sporobolus indicus (L.) R. Br. var. major (Buse) Baaijens] soil seed banks were quantified on the North Coast of New South Wales. Monthly potential seed production and actual seed fall was estimated at Valla during 1991-92. Total potential production was >668 000 seeds/m2 for the season, while seed fall was >146000 seeds/m2. Seed fall >10000 seeds/m2.month was recorded from January until May, with further seed falls recorded in June and July. The impact of seed production on seed banks was assessed by estimating seed banks in the seed production quadrats before and after seed fall. Seed banks in 4 of the 6 sites decreased in year 2, although seed numbers at 1 damp site increased markedly. Defoliation from mid-December until February, April or June prevented seed production, reducing seed banks by 34% over 7 months. Seed banks in undefoliated plots increased by 3300 seeds/m2, although seed fall was estimated at >114 000 seeds/m2. Emergence of GPG seedlings from artificially established and naturally occurring, persistent seed banks was recorded for 3 years from bare and vegetated treatment plots. Sown seeds showed high levels of innate dormancy and only 4% of seeds emerged when sown immediately after collection. Longer storage of seeds after collection resulted in more seedlings emerging. Estimates of persistent seed banks ranged from 1650 to about 21260 seeds/m2. Most seedlings emerged in spring or autumn and this was correlated with rainfall but not with ambient temperatures. Rates of seed bank decline in both bare and vegetated treatment plots was estimated by fitting exponential decay curves to seed bank estimates. Assuming no further seed inputs, it was estimated that it would take about 3 and 5 years, respectively, for seed banks to decline to 150 seeds/m2 in bare and vegetated treatments.


Sign in / Sign up

Export Citation Format

Share Document