Cell-line-dependent sorting of recombinant phytase in cell cultures of Medicago truncatula

2009 ◽  
Vol 36 (5) ◽  
pp. 431 ◽  
Author(s):  
Pablo González-Melendi ◽  
Ana Sofia Pires ◽  
Rita Abranches

Plant cell cultures as platforms for recombinant protein production are favoured over other systems because they combine the benefits of plants (low cost of production, low biosecurity risk, conserved post-translational modifications) with those of controlled cell cultures. However, many factors that affect the correct synthesis and accumulation of the recombinant product still need to be determined; in particular, the trafficking route of the recombinant proteins is poorly understood. Suspension cell cultures of Medicago truncatula Gaertn. have been shown to offer a viable and highly efficient system for the production of a model glycoprotein – phytase from the fungus Aspergillus niger Tiegh. The present study investigated subcellular protein sorting by immunogold detection of recombinant phytase with an electron microscope in four independent Medicago cell cultures expressing phytase. Two lines contained a C-terminal KDEL targeting signal for retention in the endoplasmic reticulum (ER), and the other two did not and were expected to travel through the secretory route; a high and low expressor were examined for each variant of the protein. A differential subcellular location of phytase was found in the four transgenic lines studied. These differences account not only for the version of the recombinant protein (secreted or retained in the ER), but also for the different expression levels.

2018 ◽  
Vol 13 (7) ◽  
pp. 1800050 ◽  
Author(s):  
Rita B. Santos ◽  
Balakumaran Chandrasekar ◽  
Manoj K. Mandal ◽  
Farnusch Kaschani ◽  
Markus Kaiser ◽  
...  

Reproduction ◽  
2000 ◽  
pp. 19-32 ◽  
Author(s):  
ML Martinez ◽  
JD Harris

Immunization of female mammals with native zona pellucida (ZP) proteins is known to cause infertility. Since each human ZP protein is now available as a purified recombinant protein, is it possible to compare the immunocontraceptive potential of each ZP protein. A breeding study was conducted in cynomolgus monkeys (Macaca fasicularis) after immunization with recombinant human ZP (rhZP) proteins (ZPA, ZPB, ZPC) separately and in combinations. This study demonstrated that immunization with recombinant human ZPB (rhZPB) protein caused cynomolgus monkeys to become infertile for 9-35 months. A second study was conducted in baboons (Papio cynocephalus), which yielded a similar result. The baboons immunized with rhZPB became infertile for 9 to > 20 months. During the time of maximum antibody titre, some animals experienced disruption of the menstrual cycle, but eventually all of the animals resumed normal menstrual cycles. Control animals and animals immunized with other rhZP proteins all became pregnant before any of the rhZPB-treated animals. This is the first study in which a recombinant ZP protein has consistently induced infertility in a primate without permanent disruption of the normal menstrual cycle.


2021 ◽  
Vol 169 ◽  
pp. 107966
Author(s):  
Jean-Marc Bielser ◽  
Mathieu Aeby ◽  
Stefania Caso ◽  
Anaïs Roulet ◽  
Hervé Broly ◽  
...  

1989 ◽  
Vol 31 (4) ◽  
pp. 279-285 ◽  
Author(s):  
M.E. Camargo ◽  
Maria Emilia G. Moura ◽  
P.G. Leser

In search of an efficient but simple, low cost procedure for the serodiagnosis of Toxoplasmosis, especially suited for routine laboratories facing technical and budget limitations as in less developed countries, the diagnostic capability of Hematoxo® , an hemagglutination test for toxoplasmosis, was evaluated in relation to a battery of tests including IgG- and IgM-immunofluorescence tests, hemagglutination and an IgM-capture enzymatic assay. Detecting a little as 5 I.U. of IgG antitoxoplasma antibodies, Hematoxo® showed a straight agreement as to reactivity and non-reactivity for the 443 non-reactive and the 387 reactive serum samples, included in this study. In 23 cases presenting a serological pattern of acute toxoplasmosis and showing IgM antibodies, Hematoxo® could detect IgM antibodies in 18, indicated by negativation or a significant decrease in titers as a result of treating samples with 2-mercapto-ethanol. However, a neat increase in sensitivity for IgM specific antibodies could be achieved by previously removing IgG from the sample, as demonstrated in a series of acute toxoplasmosis sera. A simple procedure was developed for this purpose, by reconstituting a lyophilized suspension of Protein A - rich Staphylococcus with the lowest serum dilution to be tested. Of low cost and easy to perform, Hematoxo® affords not only a practical qualitative procedure for screening reactors and non-reactors, as in prenatal services, but also quantitative assays that permit to titrate antibodies as well as to identify IgM antibodies.


2006 ◽  
Vol 55 (4) ◽  
pp. 375-378 ◽  
Author(s):  
Daniela M. Ferreira ◽  
Eliane N. Miyaji ◽  
Maria Leonor S. Oliveira ◽  
Michelle Darrieux ◽  
Ana Paula M. Arêas ◽  
...  

Pneumococcal surface protein A (PspA) is a promising candidate for the development of cost-effective vaccines against Streptococcus pneumoniae. In the present study, BALB/c mice were immunized with DNA vaccine vectors expressing the N-terminal region of PspA. Animals immunized with a vector expressing secreted PspA developed higher levels of antibody than mice immunized with the vector expressing the antigen in the cytosol. However, both immunogens elicited similar levels of protection against intraperitoneal challenge. Furthermore, immunization with exactly the same fragment in the form of a recombinant protein, with aluminium hydroxide as an adjuvant, elicited even higher antibody levels, but this increased humoral response did not correlate with enhanced protection. These results show that DNA vaccines expressing PspA are able to elicit protection levels comparable to recombinant protein, even though total anti-PspA IgG response is considerably lower.


2003 ◽  
Vol 162 (4) ◽  
pp. 703-717 ◽  
Author(s):  
Peter J. Peters ◽  
Alexander Mironov ◽  
David Peretz ◽  
Elly van Donselaar ◽  
Estelle Leclerc ◽  
...  

To understand the posttranslational conversion of the cellular prion protein (PrPC) to its pathologic conformation, it is important to define the intracellular trafficking pathway of PrPC within the endomembrane system. We studied the localization and internalization of PrPC in CHO cells using cryoimmunogold electron microscopy. At steady state, PrPC was enriched in caveolae both at the TGN and plasma membrane and in interconnecting chains of endocytic caveolae. Protein A–gold particles bound specifically to PrPC on live cells. These complexes were delivered via caveolae to the pericentriolar region and via nonclassical, caveolae-containing early endocytic structures to late endosomes/lysosomes, thereby bypassing the internalization pathway mediated by clathrin-coated vesicles. Endocytosed PrPC-containing caveolae were not directed to the ER and Golgi complex. Uptake of caveolae and degradation of PrPC was slow and sensitive to filipin. This caveolae-dependent endocytic pathway was not observed for several other glycosylphosphatidyl inositol (GPI)-anchored proteins. We propose that this nonclassical endocytic pathway is likely to determine the subcellular location of PrPC conversion.


2019 ◽  
Author(s):  
Michael P. Meers ◽  
Terri Bryson ◽  
Steven Henikoff

AbstractWe previously described a novel alternative to Chromatin Immunoprecipitation, Cleavage Under Targets & Release Using Nuclease (CUT&RUN), in which unfixed permeabilized cells are incubated with antibody, followed by binding of a Protein A-Micrococcal Nuclease (pA/MNase) fusion protein (1). Upon activation of tethered MNase, the bound complex is excised and released into the supernatant for DNA extraction and sequencing. Here we introduce four enhancements to CUT&RUN: 1) a hybrid Protein A-Protein G-MNase construct that expands antibody compatibility and simplifies purification; 2) a modified digestion protocol that inhibits premature release of the nuclease-bound complex; 3) a calibration strategy based on carry-over of E. coli DNA introduced with the fusion protein; and 4) a novel peak-calling strategy customized for the low-background profiles obtained using CUT&RUN. These new features, coupled with the previously described low-cost, high efficiency, high reproducibility and high-throughput capability of CUT&RUN make it the method of choice for routine epigenomic profiling.


Sign in / Sign up

Export Citation Format

Share Document