Nitric oxide participates in waterlogging tolerance through enhanced adventitious root formation in the euhalophyte Suaeda salsa

2016 ◽  
Vol 43 (3) ◽  
pp. 244 ◽  
Author(s):  
Tianshu Chen ◽  
Fang Yuan ◽  
Jie Song ◽  
Baoshan Wang

The interactions of NO and other signalling molecules contribute to adventitious root formation in many plant species. To our knowledge, the role of NO in the adventitious root formation of plants subjected to waterlogging are as yet unknown. Populations of Suaeda salsa L., a C3 euhalophytic plant, from inland saline sites develop several adventitious roots in response to waterlogging. The NO donor sodium nitroprusside (SNP) and the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1–1-oxyl-3-oxide (cPTIO) were applied to S. salsa seedlings to examine the effects of NO on flooding tolerance and its possible mechanism. SNP alleviated growth inhibition and increased adventitious root formation, endogenous NO levels and adventitious root cell integrity in S. salsa subjected to waterlogging. These SNP-mediated effects were prevented by the extra application of cPTIO. SNP treatment decreased nitrate reductase activity but increased nitric oxide synthase (NOS) activity in adventitious roots. These results suggest that in S. salsa, NO participates in waterlogging tolerance by enhancing adventitious root formation and that NO generation is associated with the NOS-associated pathway.

2020 ◽  
Author(s):  
Li Yutong ◽  
Yue Wu ◽  
Weibiao Liao ◽  
Linli Hu ◽  
Mohammed Mujitaba Dawuda ◽  
...  

Abstract Background: Brassinolide (BR), as a new type of plant hormones, is involved in the processes of plant growth and stress response. Previous studies have reported the roles of BR in regulating plant developmental processes and also response tolerance to abiotic stresses in plants. The main purpose of our study was to explore whether nitric oxide (NO) plays a role in the process of BR-induced adventitious root formation in cucumber ( Cucumis sativus L.). Results: Exogenous application of 1 μM BR significantly promoted adventitious rooting, while high concentrations of BR (2-8 μM) effectively inhibited adventitious rooting. NO donor (S-nitroso-N-acerylpenicillamine, SNAP) promoted the occurrence of adventitious roots. Simultaneously, BR and SNAP applied together significantly promoted adventitious rooting and the combined effect was superior to the application of BR or SNAP alone. Moreover, NO scavenger (c-PTIO) and inhibitors (L-NAME and Tungstate) inhibited the positive effects of BR on adventitious rooting. BR at 1 μM also increased endogenous NO content, NO synthase (NOS-like) and Nitrate reductase (NR) activities, while BRz (a specific BR biosynthesis inhibitor) decreased these effects. In addition, the relative expression level of NR was up-regulated by BR and SNAP, whereas BRz down-regulated it. The application of NO inhibitor (Tungstate) in BR also inhibited the up-regulation of NR . Conclusion: BR promoted the formation of adventitious roots by inducing the production of endogenous NO in cucumber.


2020 ◽  
Author(s):  
Li Yutong ◽  
Yue Wu ◽  
Weibiao Liao ◽  
Linli Hu ◽  
Mohammed Mujitaba Dawuda ◽  
...  

Abstract Background: Brassinolide (BR), as a new type of plant hormones, is involved in the processes of plant growth and stress response. Previous studies have reported the roles of BR in regulating plant developmental processes and also response tolerance to abiotic stresses in plants. The main purpose of our study was to explore whether nitric oxide (NO) plays a role in the process of BR-induced adventitious root formation in cucumber (Cucumis sativus L.). Results: Exogenous application of 1 μM BR significantly promoted adventitious rooting, while high concentrations of BR (2-8 μM) effectively inhibited adventitious rooting. NO donor (S-nitroso-N-acerylpenicillamine, SNAP) promoted the occurrence of adventitious roots. Simultaneously, BR and SNAP applied together significantly promoted adventitious rooting and the combined effect was superior to the application of BR or SNAP alone. Moreover, NO scavenger (c-PTIO) and inhibitors (L-NAME and Tungstate) inhibited the positive effects of BR on adventitious rooting. BR at 1 μM also increased endogenous NO content, NO synthase (NOS-like) and Nitrate reductase (NR) activities, while BRz (a specific BR biosynthesis inhibitor) decreased these effects. In addition, the relative expression level of NR was up-regulated by BR and SNAP, whereas BRz down-regulated it. The application of NO inhibitor (Tungstate) in BR also inhibited the up-regulation of NR. Conclusion: BR promoted the formation of adventitious roots by inducing the production of endogenous NO in cucumber.


2020 ◽  
Author(s):  
Li Yutong ◽  
Yue Wu ◽  
Weibiao Liao ◽  
Linli Hu ◽  
Mohammed Mujitaba Dawuda ◽  
...  

Abstract Background: Brassinolide (BR), as a new type of plant hormones, is involved in the processes of plant growth and stress response. Previous studies have reported the roles of BR in regulating plant developmental processes and also response tolerance to abiotic stresses in plants. The main purpose of our study was to explore whether nitric oxide (NO) plays a role in the process of BR-induced adventitious root formation in cucumber ( Cucumis sativus L.). Results: Exogenous application of 1 μM BR significantly promoted adventitious rooting, while high concentrations of BR (2-8 μM) effectively inhibited adventitious rooting. NO donor (S-nitroso-N-acerylpenicillamine, SNAP) promoted the occurrence of adventitious roots. Simultaneously, BR and SNAP applied together significantly promoted adventitious rooting and the combined effect was superior to the application of BR or SNAP alone. Moreover, NO scavenger (c-PTIO) and inhibitors (L-NAME and Tungstate) inhibited the positive effects of BR on adventitious rooting. BR at 1 μM also increased endogenous NO content, NO synthase (NOS-like) and Nitrate reductase (NR) activities, while BRz (a specific BR biosynthesis inhibitor) decreased these effects. In addition, the relative expression level of NR was up-regulated by BR and SNAP, whereas BRz down-regulated it. The application of NO inhibitor (Tungstate) in BR also inhibited the up-regulation of NR . Conclusion: BR promoted the formation of adventitious roots by inducing the production of endogenous NO in cucumber.


2019 ◽  
Author(s):  
Li Yutong ◽  
Yue Wu ◽  
Weibiao Liao ◽  
Linli Hu ◽  
Mohammed Mujitaba Dawuda ◽  
...  

Abstract Background: Brassinolide (BR), as a new type of plant hormones, is involved in the process of plant growth and stress response. Previous studies have reported the roles of BR in regulating plant developmental processes and also response tolerance to abiotic stresses in plants. In my study, the main purpose is to explore whether nitric oxide (NO) is involved in the process of BR-induced adventitious root formation in cucumber (Cucumis sativus L.), and whether it plays a certain role. Results: Exogenous application of 1 μM BR significantly promoted adventitious rooting, while high concentrations of BR (2-8 μM) effectively inhibited adventitious rooting. NO donor (S-nitroso-N-acerylpenicillamine, SNAP) promoted the occurrence of adventitious roots. Simultaneously, BR and SNAP mixed treatment significantly promoted adventitious rooting and the promoted effects was significantly superior to the application of BR or SNAP alone. Moreover, NO scavenger (c-PTIO) and inhibitors (L-NAME and Tungstate) inhibited the positive effects of BR on adventitious rooting. BR at 1 μM also increased endogenous NO content, NO synthase (NOS-like) and Nitrate reductase (NR) activities, while BRz (a specific BR biosynthesis inhibitor) decreased these effects. In addition, the relative expression level of NR was up-regulated by BR and SNAP, whereas BRz down-regulated it. The application of NO inhibitor (Tungstate) in BR also inhibited the up-regulation of NR. Conclusion: BR promoted the formation of adventitious roots via inducing the generation of endogenous NO.


2019 ◽  
Author(s):  
Li Yutong ◽  
Yue Wu ◽  
Weibiao Liao ◽  
Linli Hu ◽  
Mohammed Mujitaba Dawuda ◽  
...  

Abstract Background: Brassinolide (BR), as a new type of plant hormones, is involved in the processes of plant growth and stress response. Previous studies have reported the roles of BR in regulating plant developmental processes and also response tolerance to abiotic stresses in plants. The main purpose of our study was to explore whether nitric oxide (NO) plays a role in the process of BR-induced adventitious root formation in cucumber (Cucumis sativus L.). Results: Exogenous application of 1 μM BR significantly promoted adventitious rooting, while high concentrations of BR (2-8 μM) effectively inhibited adventitious rooting. NO donor (S-nitroso-N-acerylpenicillamine, SNAP) promoted the occurrence of adventitious roots. Simultaneously, BR and SNAP applied together significantly promoted adventitious rooting and the combined effect was superior to the application of BR or SNAP alone. Moreover, NO scavenger (c-PTIO) and inhibitors (L-NAME and Tungstate) inhibited the positive effects of BR on adventitious rooting. BR at 1 μM also increased endogenous NO content, NO synthase (NOS-like) and Nitrate reductase (NR) activities, while BRz (a specific BR biosynthesis inhibitor) decreased these effects. In addition, the relative expression level of NR was up-regulated by BR and SNAP, whereas BRz down-regulated it. The application of NO inhibitor (Tungstate) in BR also inhibited the up-regulation of NR. Conclusion: BR promoted the formation of adventitious roots by inducing the production of endogenous NO in cucumber.


Plant Science ◽  
2008 ◽  
Vol 174 (2) ◽  
pp. 165-173 ◽  
Author(s):  
Juan Carlos Campos-Cuevas ◽  
Ramón Pelagio-Flores ◽  
Javier Raya-González ◽  
Alfonso Méndez-Bravo ◽  
Randy Ortiz-Castro ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2487
Author(s):  
Nguyen Thi Mui ◽  
Meixue Zhou ◽  
David Parsons ◽  
Rowan William Smith

The formation of aerenchyma in adventitious roots is one of the most crucial adaptive traits for waterlogging tolerance in plants. Pasture grasses, like other crops, can be affected by waterlogging, and there is scope to improve tolerance through breeding. In this study, two summer-active cocksfoot (Dactylis glomerata L.) cultivars, Lazuly and Porto, and two summer-active tall fescue (Lolium arundinaceum Schreb., syn. Festuca arundinacea Schreb.) cultivars, Hummer and Quantum II MaxP, were selected to investigate the effects of waterlogging on root growth and morphological change. Cultivars were subjected to four periods of waterlogging treatments (7, 14, 21 and 28 days), while comparable plants were kept under free drained control conditions. The experiment was arranged as a split–split plot design, with waterlogging treatments (waterlogged, control) considered as main plots, time periods (days of waterlogging) as subplots and cultivars as sub-subplots. Plants began to show signs of waterlogging stress 14–21 days after the onset of waterlogging treatments. There were no significant differences in shoot biomass between the waterlogged and control plants of any cultivar. However, waterlogging significantly reduced root dry matter in all cultivars, with greater reduction in cocksfoot (56%) than in tall fescue (38%). Waterlogging also led to increased adventitious root and aerenchyma formation in both species. Cocksfoot cultivars showed a greater increase in adventitious roots, while tall fescue cultivars had a greater proportion of aerenchyma. Both cultivars within each species showed similar responses to waterlogging treatments. However, an extended screening program is needed to identify whether there are varietal differences within species, which could be used to discover genes related to aerenchyma or adventitious root formation (waterlogging tolerance) for use in breeding programs.


HortScience ◽  
2020 ◽  
Vol 55 (9) ◽  
pp. 1463-1467 ◽  
Author(s):  
Benjamin E. Deloso ◽  
Anders J. Lindström ◽  
Frank A. Camacho ◽  
Thomas E. Marler

The influences of indole-3-butyric acid (IBA) concentrations of 0–30 mg·g−1 on the success and speed of adventitious root development of Zamia furfuracea L.f. and Zamia integrifolia L.f. stem cuttings were determined. Root formation success for both species was greater than 95%. The IBA concentrations did not influence the speed of root development for Z. furfuracea, but the Z. integrifolia cuttings that received IBA concentration of 3 mg·g−1 generated adventitious roots more slowly than the cuttings in the control group. The ending dry weights of the stems, leaves, and roots were not influenced by IBA concentration for either species. Our results indicated that adventitious root formation on stem cuttings of these two Zamia species is successful without horticultural application of IBA. Additional IBA studies are needed on the other 300+ cycad species, especially those that are in a threatened category.


Sign in / Sign up

Export Citation Format

Share Document