scholarly journals Corrigendum to: Impact of crop load on nitrogen uptake and reserve mobilisation in Vitis vinifera

2020 ◽  
Vol 47 (8) ◽  
pp. 769
Author(s):  
Thibaut Verdenal ◽  
Jorge E. Spangenberg ◽  
Vivian Zufferey ◽  
Ágnes Dienes-Nagy ◽  
Olivier Viret ◽  
...  

Nitrogen deficit affects both crop production and composition, particularly in crops requiring an optimal fruit N content for aroma development. The adaptation of cultural practices to improve N use efficiency (NUE) (i.e. N uptake, assimilation and partitioning) is a priority for the sustainable production of high-quality crops. A trial was set on potted grapevines (Vitis vinifera L. cv. Chasselas) to investigate the potential of crop limitation (via bunch thinning) to control plant NUE and ultimately fruit N composition at harvest. A large crop load gradient was imposed by bunch thinning (0.5–2.5 kg m–2) and N traceability in the plant was realised with an isotope-labelling method (10 atom % 15N foliar urea). The results indicate that the mobilisation of root reserves plays a major role in the balance of fruit N content. Fertiliser N uptake and assimilation appeared to be strongly stimulated by high-yielding conditions. Fertilisation largely contributed to fulfilling the high fruit N demand while limiting the mobilisation of root reserves under high yield conditions. Plants were able to modulate root N reserve mobilisation and fertiliser N uptake in function of the crop load, thus maintaining a uniform N concentration in fruits. However, the fruit free amino N profile was modified, which potentially altered the fruit aromas. These findings highlight the great capacity of plants to adapt their N metabolism to constraints, crop thinning in this case. This confirms the possibility of monitoring NUE by adapting cultural practices.

2020 ◽  
Vol 47 (8) ◽  
pp. 744
Author(s):  
Thibaut Verdenal ◽  
Jorge E. Spangenberg ◽  
Vivian Zufferey ◽  
Ágnes Dienes-Nagy ◽  
Olivier Viret ◽  
...  

Nitrogen deficit affects both crop production and composition, particularly in crops requiring an optimal fruit N content for aroma development. The adaptation of cultural practices to improve N use efficiency (NUE) (i.e. N uptake, assimilation and partitioning) is a priority for the sustainable production of high-quality crops. A trial was set on potted grapevines (Vitis vinifera L. cv. Chasselas) to investigate the potential of crop limitation (via bunch thinning) to control plant NUE and ultimately fruit N composition at harvest. A large crop load gradient was imposed by bunch thinning (0.5–2.5 kg m–2) and N traceability in the plant was realised with an isotope-labelling method (10 atom % 15N foliar urea). The results indicate that the mobilisation of root reserves plays a major role in the balance of fruit N content. Fertiliser N uptake and assimilation appeared to be strongly stimulated by high-yielding conditions. Fertilisation largely contributed to fulfilling the high fruit N demand while limiting the mobilisation of root reserves under high yield conditions. Plants were able to modulate root N reserve mobilisation and fertiliser N uptake in function of the crop load, thus maintaining a uniform N concentration in fruits. However, the fruit free amino N profile was modified, which potentially altered the fruit aromas. These findings highlight the great capacity of plants to adapt their N metabolism to constraints, crop thinning in this case. This confirms the possibility of monitoring NUE by adapting cultural practices.


Agronomy ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 309 ◽  
Author(s):  
Isabelle Quilleré ◽  
Céline Dargel-Graffin ◽  
Peter J. Lea ◽  
Bertrand Hirel

The impact of nitrogen (N)-limiting conditions after silking on kernel yield (KY)-related traits and whole plant N management was investigated using fifteen maize lines representative of plant genetic diversity in Europe and America. A large level of genetic variability of these traits was observed in the different lines when post-silking fertilization of N was strongly reduced. Under such N-fertilization conditions, four different groups of lines were identified on the basis of KY and kernel N content. Although the pattern of N management, including N uptake and N use was variable in the four groups of lines, a number of them were able to maintain both a high yield and a high kernel N content by increasing shoot N remobilization. No obvious relationship between the genetic background of the lines and their mode of N management was found. When N was limiting after silking, N remobilization appeared to be a good predictive marker for identifying maize lines that were able to maintain a high yield and a high kernel N content irrespective of their female flowering date. The use of N remobilization as a trait to select maize genotypes adapted to low N input is discussed.


2021 ◽  
Author(s):  
Thibaut Verdenal ◽  
Vivian Zufferey ◽  
Agnes Dienes-Nagy ◽  
Jean-Laurent Spring ◽  
Olivier Viret ◽  
...  

<p>This presentation addresses the actual concerns in viticulture regarding grapevine nitrogen (N) metabolism in the context of reducing both inputs and environmental pollution, while optimizing the balance between yield and wine quality. By adapting agronomical practices to the environmental conditions (i.e. soil and climate), it is possible to optimise both plant N use efficiency (NUE) and crop quality, while reducing N input in the vineyard. The present trial demonstrates the potential of crop-load limiting (via bunch thinning) to fine-tune plant NUE and optimise grape N composition at harvest. These results improve the comprehension of the seasonal plant N cycle in perennial crops and it contributes to the implementation of sustainable practices in vineyards and potentially in other crops.</p><p>Over the past decades, N supply in vineyards has been reduced with the aim of adjusting vigour and yield. Moreover, the development of cover cropping has led to increased competition for N resources in vineyards, which can, in some cases, be detrimental to both yield and quality of the crop. This evolution of management practices – without considering the environmental conditions – has led to situations with major grape N deficiencies, being detrimental to fermentation kinetics, yield and possibly wine quality. Given the major role of N in plant physiology, an integrative approach to managing grapevine N nutrition from soil to crop – in accordance with the environmental conditions – represents a sustainable solution for high-quality grape production.</p><p>In this trial on white cv. Chasselas (Vitis vinifera L.), plant N partitioning and grape composition were monitored over two years, in relation to both crop load and fertilisation. These aims were accomplished by testing a large crop load gradient (via bunch thinning, resulting in 0.7–5.2 kg per plant) and by using a <sup>15</sup>N-labelling method (fertilization with 10 atom % <sup>15</sup>N foliar urea). The results indicate that the mobilisation of root N reserves plays a major role in the balance of fruit N content. Carry-over effects to the next year were highlighted. N uptake and assimilation appeared to be strongly stimulated by high-yield conditions. Fertilisation largely contributed to fulfilling the high fruit N demand while limiting the mobilisation of root N reserves under high-yield conditions. Plants were able to modulate both root N reserve mobilisation and N uptake as a function of crop load, thus maintaining a relatively uniform N concentration in fruits. However, the fruit free amino N profile was modified, which potentially affected aromas in grapes and wines. A modelling of the seasonal plant N cycle (i.e. uptake and efflux) is also proposed.</p><p><strong>Key words</strong>: Nitrogen metabolism, <sup>15</sup>N-isotope labelling, crop load, grape composition, wine quality</p>


2004 ◽  
Vol 31 (11) ◽  
pp. 1127 ◽  
Author(s):  
Christophe Zapata ◽  
Eliane Deléens ◽  
Sylvain Chaillou ◽  
Christian Magné

As a part of a project aimed at elucidating the causal relationship between reserve mobilisation and the extent of shedding in Vitis vinifera L., we compared storage and fate of carbon (C) and nitrogen (N) reserves in two varieties differing in their susceptibility to fruitlet abscission. Merlot (susceptible) and Pinot Noir (P. Noir, not susceptible) vines were grown in trenches under semi-controlled conditions over a 3-y period after planting. Mobilisation of stored C and N, distribution of reserve materials within the vines and 15N uptake were followed particularly during the spring growth flush and floral development in the third year. At dormancy, starch levels in the perennial tissues (roots, trunk, canes) were higher in Merlot than in P. Noir. During the spring growth flush, starch level decreased markedly in the roots of both cultivars until early bloom. At that time, starch started to accumulate in P. Noir but not in Merlot. Similar variations were found with total N. Accordingly, 15N analysis showed that translocation of storage N to the annual tissues was nearly achieved at early bloom in P. Noir while it continued until pea berry size in Merlot. In parallel, N uptake increased during the spring growth flush, and it was higher in P. Noir than in Merlot. These results indicate that transition between heterotrophic (root) and autotrophic (leaf) mode of nutrient allocation towards the developing inflorescences occurs earlier in P. Noir. Possible consequences are discussed in relation to the susceptibility of each cultivar to shedding.


Planta Medica ◽  
2007 ◽  
Vol 73 (09) ◽  
Author(s):  
H Amira-Guebailia ◽  
T Richard ◽  
S Rouaiguia ◽  
P Waffo Tueguo ◽  
JC Delaunay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document