scholarly journals Phylogeny of the African ball-rolling dung beetle genus Epirinus Reiche (Coleoptera:Scarabaeidae:Scarabaeinae)

2011 ◽  
Vol 25 (3) ◽  
pp. 197 ◽  
Author(s):  
S. Mlambo ◽  
C. L. Sole ◽  
C. H. Scholtz

Recent phylogenetic analyses have pointed to the dung beetle genus Epirinus as the putative African ancestral roller group. Consequently, we tested the roller status of species in the genus with observational studies and constructed a molecular phylogeny based on partial sequences of two mitochondrial and two nuclear genes for 16 of 29 species. Tested species were confirmed to be dung rollers. Monophyly of the genus was confirmed, lending support to the synonymy of the wingless genus Endroedyantus with Epirinus. Moreover, the phylogenetic hypothesis was found to have a similar topology with a previously published one based on morphological data. A combined molecular and morphology analysis showed congruence between the molecular and morphological datasets. The loss of flight in some species and estimated divergence dates within Epirinus are discussed.

Phytotaxa ◽  
2020 ◽  
Vol 438 (5) ◽  
pp. 289-300
Author(s):  
ANNELISE FRAZÃO ◽  
LÚCIA G. LOHMANN

During ongoing taxonomic studies with Tanaecium, we identified some morphological disparities between Tanaecium mutabile and the remaining species of the genus. Here, we reconstruct a molecular phylogeny of Tanaecium based on two molecular markers (i.e., the chloroplast ndhF and the nuclear pepC), and a broad sampling of members of the Arrabidaea and allies clade, where Tanaecium is included. In the newly constructed phylogeny, T. mutabile is nested within Fridericia, indicating the need for taxonomic arrangements. These findings are further supported by new morphological data (e.g., venation angle, domatia type, and corolla curvature). Based on these results, we formally transfer T. mutabile into Fridericia, and propose the necessary new combination. We further designate a new lectotype for Arrabidaea muehlbergiana, a synonym of T. mutabile. Morphological comparisons between T. mutabile and other morphologically similar species are presented.


Zootaxa ◽  
2007 ◽  
Vol 1493 (1) ◽  
pp. 41-51 ◽  
Author(s):  
ELI GREENBAUM ◽  
AARON M. BAUER ◽  
TODD R. JACKMAN ◽  
MIGUEL VENCES ◽  
FRANK GLAW

Since its discovery in the 17th century, the morphological peculiarities of the gekkonid lizard genus Uroplatus have generated a great deal of attention. A large number of skeletal, integumentary and visceral features are autapomorphic for the genus and some of the more well-known members of the group possess such aberrant characteristics that a separate family was once recognized to accommodate them. Recent phylogenetic analyses confirm that Uroplatus is a typical gekkonid gecko, but the specific affinities of the genus, as well as its intrageneric relationships have remained unresolved. Both nuclear (RAG-1 and PDC) and mitochondrial (ND2 and cyt b) genes (~3.2 Kb) were sequenced for 10 of 13 recognized species of Uroplatus, as well as two Madagascan and mainland African outgroups. The large-bodied forms of Uroplatus (U. fimbriatus, U. giganteus, U. henkeli, and U. sikorae) form a monophyletic group, and the smallbodied, short-tailed species are also monophyletic (U. ebenaui and U. phantasticus). Uroplatus alluaudi + U. pietschmanni comprise another distinct clade, whereas U. lineatus was weakly supported as the sister taxon of the largebodied clade and U. guentheri was sister to all other members of the genus. Our phylogenetic hypothesis based on combined DNA sequence data is mostly congruent with previous hypotheses based on morphological data. Based on a larger, more inclusive dataset, the closest relatives of Uroplatus are mainland African Afrogecko and Madagascan Matoatoa, suggesting that the diverse Malagasy gecko fauna does not comprise a single evolutionary lineage. A high diversity of new taxa (either representing synonyms to resurrect or undescribed species), morphologically similar either to U. ebenaui/phantasticus or to U. henkeli/sikorae, was apparent from our data. Many of these genetically highly divergent lineages originated from localities in northern Madagascar, which indicates this region as the possible center of diversity and endemism for several subgroups of Uroplatus.


Zootaxa ◽  
2017 ◽  
Vol 4329 (2) ◽  
pp. 101 ◽  
Author(s):  
SERGEI TARASOV

Two Oriental dung beetle genera: Parachorius Harold, 1873 and Cassolus Sharp, 1875 have long had an ambiguous tribal position in Scarabaeinae (Coleoptera: Scarabaeidae), but have never been considered as closely related. A recently discovered species representing the morphological link between the two genera gave a hint to their possible close affiliation. To assess phylogenetic and taxonomic placement of these genera, I conducted phylogenetic analyses of global dung beetle samples using morphological (134 taxa, 232 characters) and molecular (551 terminals, 8 gene regions) data. Both morphological and molecular analyses strongly support the monophyly of Parachorius + Cassolus. This leads to the synonymy of Parachorius with Cassolus new synonymy, and resulted in the new generic concept for Parachorius. The isolated phylogenetic position of Parachorius and its morphological distinctiveness from all other known Scarabaeinae tribes suggest recognition of a new tribe, Parachoriini new tribe, to maintain the stability of tribal classification in dung beetles. Investigation of old and recent material of Parachorius revealed a large number of undescribed species and the need for a taxonomic revision of this genus. The revision of Parachorius, powered by the 3i cybertaxonomic tool, is presented in this study. The revised Parachorius is comprised of 19 species from the Oriental and southeastern Palaearctic Regions, of which seven are newly described (P. asymmetricus new species, P. bolavensis new species, P. longipenis new species, P. newthayerae new species, P. pseudojavanus new species, P. schuelkei new species, and P. solodovnikovi new species). Three species names in Parachorius are synonymized, namely, P. fungorum Kryzhanovsky & Medvedev, 1966 = P. krali Utsunomiya & Masumoto, 2001 new synonymy; P. thomsoni Harold, 1873 = P. lannathai Hanboonsong & Masumoto, 2001 new synonymy; and P. peninsularis (Arrow, 1907) = C. pongchaii Masumoto, 2001 new synonymy. Two species originally described in Cassolus (C. sumatranus and C. minutus) are transferred to the genus Panelus Lewis, 1895. The rank of the genus Macropanelus is lowered to a subgenus within Panelus (i.e. Panelus (Macropanelus) new status). 


2015 ◽  
Author(s):  
Gabriel S Ferreira ◽  
Juliana Sterli ◽  
Mario Bronzati Filho ◽  
Max C Langer

Background. Most studies on pleurodiran turtles are about the behavior and/or feeding habits analyzes, description of new taxa or specimens (both extinct and extant), or phylogenetic analyzes of one of its subclades with extant taxa: Chelidae, Pelomedusidae or Podocnemididae. With the exception of some molecular phylogenies, there are no phylogenetic analyses of extant and extinct representatives of Pleurodira including all of its lineages. A broader understanding of the evolutionary history of Pleurodira requires a phylogenetic hypothesis based on more extensive taxonomic and character samplings.Methods. We constructed a taxon-character matrix including 227 morphological characters and 87 taxa from all the Pleurodira lineages, plus one stem Pan-Pleurodira, Notoemys laticentralis, and one stem-Testudinata, Proganochelys quenstedti, as outgroups. The resulting matrix was analyzed using parsimony, Tree Bisection and Reconnection (TBR) algorithms, with 5000 replicates, and a hold of 20. The obtained strict consensus tree was used as the basis of a diversification analysis using topology-based methods. A nestedgrowing tree approach was employed to create a corresponding tree for different intervals of the geological history of the group. Six distinct time bins were created for periods in which members of Pleurodira occur: Early Cretaceous, Late Cretaceous, Paleocene, Eocene, Miocene, and Recent. Results. All main pleurodiran clades were recovered in the strict consensus tree, but with some changes in their relationship compared to previous analyses, e.g. the inclusiveness of both Pelomedusoides and Bothremydidae. The diversification analysis shows that, after the establishment of the two major lineages (i.e. Chelidae and Pelomedusoides) in the Early Cretaceous, these subgroups diversified in distinct rates along their evolutionary history. Two main diversification shifts were identified: one at the early evolution of Podocnemoidea, during the Late Cretaceous, and another during the Miocene, deep nested in the Podocnemididae clade. Discussion. The resulting strict consensus tree is the largest exclusive phylogenetic hypothesis for Pleurodira, including both extant and extinct taxa. Based on morphological data, it allows more inclusive inferences on the general morphological and diversification patterns of the group. The diversification pulses analysis suggests variation on the rates of diversification on the different pleurodiran clades. The first shift detected is related to the great radiation of Bothremydidae and Podocnemoidae in the Late Cretaceous; the second shift, detected in the Miocene, is related to a diversification within the Stereogenyina, a Podocnemididae clade. Ongoing analysis will determine which factors could enforce those different diversification rates in the evolution of Pleurodira.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6640
Author(s):  
Dominik Chłond ◽  
Natalia Sawka-Gądek ◽  
Dagmara Żyła

Among the 30 known genera within subfamily Peiratinae, only the genusSirtheneahas a cosmopolitan distribution. The results of our studies are the first comprehensive analysis concerning one of the representatives of mentioned subfamily based on joint phylogenetic analyses of molecular and morphological data as well as molecular dating. A total of 32 species were included into the dataset with all known species of the genusSirthenea. Material of over 400 dry specimens was examined for the morphological part of this study. The cosmopolitan distribution ofSirtheneaand the inaccessibility of specimens preserved in alcohol required the extraction of DNA from the dried skeletal muscles of specimens deposited in 24 entomological collections. The oldest specimens used for the successful extraction and sequencing were collected more than 120 years ago in India. We performed Bayesian Inference analyses of molecular and morphological data separately, as well as combined analysis. The molecular and morphological data obtained during our research verify the correlation of the divergence dates of all knownSirtheneaspecies. Results of the relaxed molecular clock analysis of the molecular data show that, the genusSirtheneastarted diverging in the Late Cretaceous into two clades, which subsequently began to branch off in the Paleocene. Our results of phylogenetic analyses suggest that thefossula spongiosaand its development could be one of the most important morphological characters in the evolution of the genus, most likely associated with the ecological niche inhabited bySirthenearepresentatives. Confirmation of the results obtained in our studies is the reconciliation of the evolutionary history ofSirtheneawith the biogeographical processes that have shaped current global distribution of the genus.


2015 ◽  
Author(s):  
Gabriel S Ferreira ◽  
Juliana Sterli ◽  
Mario Bronzati Filho ◽  
Max C Langer

Background. Most studies on pleurodiran turtles are about the behavior and/or feeding habits analyzes, description of new taxa or specimens (both extinct and extant), or phylogenetic analyzes of one of its subclades with extant taxa: Chelidae, Pelomedusidae or Podocnemididae. With the exception of some molecular phylogenies, there are no phylogenetic analyses of extant and extinct representatives of Pleurodira including all of its lineages. A broader understanding of the evolutionary history of Pleurodira requires a phylogenetic hypothesis based on more extensive taxonomic and character samplings.Methods. We constructed a taxon-character matrix including 227 morphological characters and 87 taxa from all the Pleurodira lineages, plus one stem Pan-Pleurodira, Notoemys laticentralis, and one stem-Testudinata, Proganochelys quenstedti, as outgroups. The resulting matrix was analyzed using parsimony, Tree Bisection and Reconnection (TBR) algorithms, with 5000 replicates, and a hold of 20. The obtained strict consensus tree was used as the basis of a diversification analysis using topology-based methods. A nestedgrowing tree approach was employed to create a corresponding tree for different intervals of the geological history of the group. Six distinct time bins were created for periods in which members of Pleurodira occur: Early Cretaceous, Late Cretaceous, Paleocene, Eocene, Miocene, and Recent. Results. All main pleurodiran clades were recovered in the strict consensus tree, but with some changes in their relationship compared to previous analyses, e.g. the inclusiveness of both Pelomedusoides and Bothremydidae. The diversification analysis shows that, after the establishment of the two major lineages (i.e. Chelidae and Pelomedusoides) in the Early Cretaceous, these subgroups diversified in distinct rates along their evolutionary history. Two main diversification shifts were identified: one at the early evolution of Podocnemoidea, during the Late Cretaceous, and another during the Miocene, deep nested in the Podocnemididae clade. Discussion. The resulting strict consensus tree is the largest exclusive phylogenetic hypothesis for Pleurodira, including both extant and extinct taxa. Based on morphological data, it allows more inclusive inferences on the general morphological and diversification patterns of the group. The diversification pulses analysis suggests variation on the rates of diversification on the different pleurodiran clades. The first shift detected is related to the great radiation of Bothremydidae and Podocnemoidae in the Late Cretaceous; the second shift, detected in the Miocene, is related to a diversification within the Stereogenyina, a Podocnemididae clade. Ongoing analysis will determine which factors could enforce those different diversification rates in the evolution of Pleurodira.


2021 ◽  
Vol 307 (2) ◽  
Author(s):  
Pau Carnicero ◽  
Núria Garcia-Jacas ◽  
Llorenç Sáez ◽  
Theophanis Constantinidis ◽  
Mercè Galbany-Casals

AbstractThe eastern Mediterranean basin hosts a remarkably high plant diversity. Historical connections between currently isolated areas across the Aegean region and long-distance dispersal events have been invoked to explain current distribution patterns of species. According to most recent treatments, at least two Cymbalaria species occur in this area, Cymbalaria microcalyx and C. longipes. The former comprises several intraspecific taxa, treated at different ranks by different authors based on morphological data, evidencing the need of a taxonomic revision. Additionally, some populations of C. microcalyx show exclusive morphological characters that do not match any described taxon. Here, we aim to shed light on the systematics of eastern Mediterranean Cymbalaria and to propose a classification informed by various sources of evidence. We performed molecular phylogenetic analyses using ITS, 3’ETS, ndhF and rpl32-trnL sequences and estimated the ploidy level of some taxa performing relative genome size measures. Molecular data combined with morphology support the division of traditionally delimited C. microcalyx into C. acutiloba, C. microcalyx and C. minor, corresponding to well-delimited nrDNA lineages. Furthermore, we propose to combine C. microcalyx subsp. paradoxa at the species level. A group of specimens previously thought to belong to Cymbalaria microcalyx constitute a well-defined phylogenetic and morphological entity and are described here as a new species, Cymbalaria spetae. Cymbalaria longipes is non-monophyletic, but characterized by being glabrous and diploid, unlike other eastern species. The nrDNA data suggest at least two dispersals from the mainland to the Aegean Islands, potentially facilitated by marine regressions.


2020 ◽  
Vol 94 ◽  
Author(s):  
J. Schwelm ◽  
O. Kudlai ◽  
N.J. Smit ◽  
C. Selbach ◽  
B. Sures

Abstract Bithynids snails are a widespread group of molluscs in European freshwater systems. However, not much information is available on trematode communities from molluscs of this family. Here, we investigate the trematode diversity of Bithynia tentaculata, based on molecular and morphological data. A total of 682 snails from the rivers Lippe and Rhine in North Rhine-Westphalia, Germany, and 121 B. tentaculata from Curonian Lagoon, Lithuania were screened for infections with digeneans. In total, B. tentaculata showed a trematode prevalence of 12.9% and 14%, respectively. The phylogenetic analyses based on 55 novel sequences for 36 isolates demonstrated a high diversity of digeneans. Analyses of the molecular and morphological data revealed a species-rich trematode fauna, comprising 20 species, belonging to ten families. Interestingly, the larval trematode community of B. tentaculata shows little overlap with the well-studied trematode fauna of lymnaeids and planorbids, and some of the detected species (Echinochasmus beleocephalus and E. coaxatus) constitute first records for B. tentaculata in Central Europe. Our study revealed an abundant, diverse and distinct trematode fauna in B. tentaculata, which highlights the need for further research on this so far understudied host–parasite system. Therefore, we might currently be underestimating the ecological roles of several parasite communities of non-pulmonate snail host families in European fresh waters.


ZooKeys ◽  
2020 ◽  
Vol 939 ◽  
pp. 45-64
Author(s):  
Ping Wang ◽  
Jing Che ◽  
Qin Liu ◽  
Ke Li ◽  
Jie Qiong Jin ◽  
...  

The Asian snail-eating snakes Pareas is the largest genus of the family Pareidae (formerly Pareatidae), and widely distributed in Southeast Asia. However, potential diversity remains poorly explored due to their highly conserved morphology and incomplete samples. Here, on basis of more extensive sampling, interspecific phylogenetic relationships of the genus Pareas were reconstructed using two mitochondrial fragments (cyt b and ND4) and two nuclear genes (c-mos and Rag1), and multivariate morphometrics conducted for external morphological data. Both Bayesian Inference and Maximum Likelihood analyses consistently showed that the genus Pareas was comprised of two distinct, monophyletic lineages with moderate to low support values. Based on evidences from molecular phylogeny and morphological data, cryptic diversity of this genus was uncovered and two new species were described. In additional, the validity of P. macularius is confirmed.


2021 ◽  
Vol 8 ◽  
Author(s):  
MJosé Pérez-Alvarez ◽  
Sebastián Kraft ◽  
Nicolás I. Segovia ◽  
Carlos Olavarría ◽  
Sergio Nigenda-Morales ◽  
...  

Four fin whale sub-species are currently considered valid: Balaenoptera physalus physalus in the North Atlantic, B. p. velifera in the North Pacific, B. p. quoyi and B. p. patachonica in the Southern Hemisphere. The last, not genetically validated, was described as a pygmy-type sub-species, found in low to mid latitudes of the Southern Hemisphere. Genetic analyses across hemispheres show strong phylogeographic structure, yet low geographic coverage in middle latitudes of the Southern Hemisphere impeded an assessment within the area, as well as evaluating the validity of B. p. patachonica. New mtDNA sequences from the Southeastern Pacific allowed an improved coverage of the species’ distribution. Our phylogenetic analyses showed three main lineages and contrasting phylogeographic patterns between Northern and Southern Hemispheres. Absence of recurrent female mediated gene flow between hemispheres was found; however, rare dispersal events revealing old migrations were noted. The absence of genetic structure suggests the existence of one single taxa within the Southern Hemisphere. Thus, until further evidence supporting this subspecies can be produced, such as genetic, ecological, behavioral, or morphological data, we propose that all fin whales from the Southern Hemisphere, including those from middle latitudes of the Southeastern Pacific belong to B. p. quoyi subspecies. This information is important for the current assessment of fin whales, contributing to the evaluation of the taxonomic classification and the conservation of the species.


Sign in / Sign up

Export Citation Format

Share Document