scholarly journals Functional genomics in yeast

2007 ◽  
Vol 28 (2) ◽  
pp. 51
Author(s):  
Ian W Dawes ◽  
Geoffrey D Kornfeld ◽  
Gabriel G Perrone

Completion of the Saccharomyces cerevisiae genome sequencing project in 1996 led to an incredible explosion of research on basic cellular processes and has provided the opportunity to determine how genes and their products are regulated and function on a genome-wide scale. The technologies that were developed from this provided an incredible array of tools to study cellular processes in great detail and were a paradigm for developments from subsequent sequencing projects.

2014 ◽  
Vol 42 (15) ◽  
pp. 9838-9853 ◽  
Author(s):  
Saeed Kaboli ◽  
Takuya Yamakawa ◽  
Keisuke Sunada ◽  
Tao Takagaki ◽  
Yu Sasano ◽  
...  

Abstract Despite systematic approaches to mapping networks of genetic interactions in Saccharomyces cerevisiae, exploration of genetic interactions on a genome-wide scale has been limited. The S. cerevisiae haploid genome has 110 regions that are longer than 10 kb but harbor only non-essential genes. Here, we attempted to delete these regions by PCR-mediated chromosomal deletion technology (PCD), which enables chromosomal segments to be deleted by a one-step transformation. Thirty-three of the 110 regions could be deleted, but the remaining 77 regions could not. To determine whether the 77 undeletable regions are essential, we successfully converted 67 of them to mini-chromosomes marked with URA3 using PCR-mediated chromosome splitting technology and conducted a mitotic loss assay of the mini-chromosomes. Fifty-six of the 67 regions were found to be essential for cell growth, and 49 of these carried co-lethal gene pair(s) that were not previously been detected by synthetic genetic array analysis. This result implies that regions harboring only non-essential genes contain unidentified synthetic lethal combinations at an unexpectedly high frequency, revealing a novel landscape of genetic interactions in the S. cerevisiae genome. Furthermore, this study indicates that segmental deletion might be exploited for not only revealing genome function but also breeding stress-tolerant strains.


2021 ◽  
Author(s):  
Heather R. Keys ◽  
Kristin A. Knouse

ABSTRACTOur ability to understand and modulate mammalian physiology and disease requires knowing how all genes contribute to any given phenotype in the organism. Genome-wide screening using CRISPR-Cas9 has emerged as a powerful method for the genetic dissection of cellular processes1,2, but the need to stably deliver single guide RNAs to millions of cells has restricted its implementation to ex vivo systems. These ex vivo systems cannot reproduce all of the cellular phenotypes observed in vivo nor can they recapitulate all of the factors that influence these phenotypes. There thus remains a pressing need for high-throughput functional genomics in a living organism. Here, we establish accessible genome-wide screening in the mouse liver and use this approach to uncover the complete regulation of cellular fitness in a living organism. We discover novel sex-specific and cell non-autonomous regulation of cell growth and viability. In particular, we find that the class I major histocompatibility complex is essential for preventing immune-mediated clearance of hepatocytes. Our approach provides the first comprehensive picture of cell fitness in a living organism and highlights the importance of investigating cellular phenomena in their native context. Our screening method is robust, scalable, and easily adapted to examine diverse cellular processes using any CRISPR application. We have hereby established a foundation for high-throughput functional genomics in a living mammal, enabling unprecedented insight into mammalian physiology and disease.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Amir Momen-Roknabadi ◽  
Panos Oikonomou ◽  
Maxwell Zegans ◽  
Saeed Tavazoie

AbstractGenome-scale CRISPR interference (CRISPRi) is widely utilized to study cellular processes in a variety of organisms. Despite the dominance of Saccharomyces cerevisiae as a model eukaryote, an inducible genome-wide CRISPRi library in yeast has not yet been presented. Here, we present a genome-wide, inducible CRISPRi library, based on spacer design rules optimized for S. cerevisiae. We have validated this library for genome-wide interrogation of gene function across a variety of applications, including accurate discovery of haploinsufficient genes and identification of enzymatic and regulatory genes involved in adenine and arginine biosynthesis. The comprehensive nature of the library also revealed refined spacer design parameters for transcriptional repression, including location, nucleosome occupancy and nucleotide features. CRISPRi screens using this library can identify genes and pathways with high precision and a low false discovery rate across a variety of experimental conditions, enabling rapid and reliable assessment of genetic function and interactions in S. cerevisiae.


2015 ◽  
Vol 20 (2) ◽  
Author(s):  
Dan Qin ◽  
Cunshuan Xu

AbstractLong non-coding RNAs (lncRNAs) have attracted considerable attention recently due to their involvement in numerous key cellular processes and in the development of various disorders. New high-throughput methods enable their study on a genome-wide scale. Numerous lncRNAs have been identified and characterized as important members of the biological regulatory network, with significant roles in regulating gene expression at the epigenetic, transcriptional and post-transcriptional levels. This paper summarizes the diverse mechanisms of action of these lncRNAs and looks at the study strategies in this field. A major challenge in future study is to establish more effective bioinformatics and experimental methods to explore the functions, detailed mechanisms of action and structures deciding the functional diversity of lncRNAs, since the vast majority remain unresolved.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9442 ◽  
Author(s):  
Zachary J. Waldrip ◽  
Piroon Jenjaroenpun ◽  
Oktawia DeYoung ◽  
Intawat Nookaew ◽  
Sean D. Taverna ◽  
...  

The CRISPR system has become heavily utilized in biomedical research as a tool for genomic editing as well as for site-specific chromosomal localization of specific proteins. For example, we developed a CRISPR-based methodology for enriching a specific genomic locus of interest for proteomic analysis in Saccharomyces cerevisiae, which utilized a guide RNA-targeted, catalytically dead Cas9 (dCas9) as an affinity reagent. To more comprehensively evaluate the genomic specificity of using dCas9 as a site-specific tool for chromosomal studies, we performed dCas9-mediated locus enrichment followed by next-generation sequencing on a genome-wide scale. As a test locus, we used the ARS305 origin of replication on chromosome III in S. cerevisiae. We found that enrichment of this site is highly specific, with virtually no off-target enrichment of unique genomic sequences. The high specificity of genomic localization and enrichment suggests that dCas9-mediated technologies have promising potential for site-specific chromosomal studies in organisms with relatively small genomes such as yeasts.


Author(s):  
Nida Tabassum Khan ◽  
Namra Jameel ◽  
Maham Jamil Khan

Functional genomics manipulates genomic data to study genes and its expression on a genome wide scale involving high-throughput methods. The keyobjective of Functional genomics is to exploit the data acquired from transcriptomic and genomic studies to explain the functions and interfaces of a genome and its corresponding phenotype.


2005 ◽  
Vol 187 (1) ◽  
pp. 4-6 ◽  
Author(s):  
K. Pennington ◽  
D. Cotter ◽  
M. J. Dunn

SummaryProteomics is the study of protein expression and function on a genome-wide scale and its application in psychiatric research is relatively new. As protein expression is the mediator of genetic vulnerabilities, it is critical that this area is explored further to increase our understanding of psychiatric disease and reveal potential new treatments.


Author(s):  
Amir Momen-Roknabadi ◽  
Panos Oikonomou ◽  
Maxwell Zegans ◽  
Saeed Tavazoie

AbstractGenome-scale CRISPR interference (CRISPRi) is widely utilized to study cellular processes in a variety of organisms. Despite its dominance as a model eukaryote, a genome-wide CRISPRi library, optimized for targeting the Saccharomyces cerevisiae genome, has not been presented to date. We have generated a comprehensive, inducible CRISPRi library, based on spacer design rules optimized for yeast. We have validated this library for genome-wide interrogation of gene function across a variety of applications, including accurate discovery of haploinsufficient genes and identification of enzymatic and regulatory genes involved in adenine and arginine biosynthesis. The comprehensive nature of the library also revealed parameters for optimal transcriptional repression, including upstream distance, nucleosomal occupancy, and strand bias. CRISPRi screens, using this library can identify genes and pathways with high precision and low false discovery rate across a variety of experimental conditions, enabling rapid and reliable genome-wide assessment of gene function and genetic interactions in S.cerevisiae.


Sign in / Sign up

Export Citation Format

Share Document