Response of stream macroinvertebrates to changes in salinity and the development of a salinity index
Many streams and wetlands have been affected by increasing salinity, leading to significant changes in flora and fauna. The study investigates relationships between macroinvertebrate taxa and conductivity levels (µS cm−1) in Queensland stream systems. The analysed dataset contained occurrence patterns of frequently found macroinvertebrate taxa from edge (2580 samples) and riffle (1367 samples) habitats collected in spring and autumn over 8 years. Sensitivity analysis with predictive artificial neural network models and the taxon-specific mean conductivity values were used to assign a salinity sensitivity score (SSS) to each taxon (1—very tolerant, 5—tolerant, 10—sensitive). Salinity index (SI) based on the cumulative SSS was proposed as a measurement of change in macroinvertebrate communities caused by salinity increase. Changes in macroinvertebrate communities were observed at relatively low salinities, with SI rapidly decreasing to ~800–1000 µS cm−1 and decreasing further at a slower rate. Natural variability and water quality factors were ruled out as potential primary causes of the observed changes by using partial canonical correspondence analysis and subsets of the data with only good water quality.