Dormant propagule banks of aquatic invertebrates in ponds invaded by exotic pine species in southern Brazil

2017 ◽  
Vol 68 (5) ◽  
pp. 954 ◽  
Author(s):  
Cristina Stenert ◽  
Bruna Ehlert ◽  
Arthur Cardoso Ávila ◽  
Francisco Diogo Rocha Sousa ◽  
Fernanda Mara Esquinatti ◽  
...  

Exotic pine invasion affects native wetland communities in the Southern Hemisphere by changing the hydrological regimen and physicochemical characteristics. Studies evaluating the emergence of aquatic invertebrates from dormant stages are vital to identify the resilience of aquatic communities in ponds invaded by exotic pine species. In the present study, we tested the hypotheses that: (1) pine invasion decreases the richness of drought-resistant aquatic invertebrates in ponds; (2) pine invasion modifies the invertebrate composition in ponds; and (3) these differences in species composition (β diversity) are associated primarily with species turnover. Dry sediment samples were collected from three natural ponds in native grassland and three ponds in a pine invasion matrix in southern Brazil. In all, 7205 invertebrates, primarily represented by cladocerans (18 species), were sampled after rewetting dry sediments. Pine invasion decreased the richness of aquatic invertebrates because the natural ponds had almost 60% more species and a higher number of estimated species than the pine ponds. The composition differed between natural and pine ponds, and this difference in species composition (β diversity) was associated primarily with the replacement of some species by others. The presence of pine appears to alter colonisation and survival rates of aquatic invertebrates that aestivate in dry sediments in southern Brazil wetlands.

2012 ◽  
Vol 63 (4) ◽  
pp. 283 ◽  
Author(s):  
Cristina Stenert ◽  
Roberta C. Bacca ◽  
Aline B. Moraes ◽  
Arthur C. de Ávila ◽  
Leonardo Maltchik

Exotic pine invasion influences native wetland assemblages by changing environmental conditions such as hydrological regime and physicochemical characteristics. The expansion of cultivated pine has been a concern in southern Brazil and its impacts on aquatic biodiversity are poorly known. We tested the hypotheses that: (1) pine invasion decreases aquatic macroinvertebrate richness and abundance, modifying composition and macroinvertebrate functional feeding groups in ponds; and (2) β-diversity between natural and pine ponds is determined mainly by species nestedness. Five ponds in native grassland and five in a pine-planted matrix were sampled seven times from 2007 to 2009. The pine ponds had reduced macroinvertebrate richness and abundance, and different taxa and functional feeding groups. Comparing ponds in natural and cultivated pine areas, β-diversity as determined by nestedness did not differ from the value resulting from the turnover. Reduction of surface in ponds in pine areas may be one of the main causes for the lower macroinvertebrate richness and abundance because many taxa do not have adaptations to tolerate or escape the dry phase. Our results suggest that pine invasion has a negative impact on macroinvertebrate structure in southern Brazil coastal ponds.


2020 ◽  
Vol 36 (5) ◽  
pp. 234-242
Author(s):  
Reuber Antoniazzi ◽  
Arleu B. Viana-Junior ◽  
Jaime Pelayo-Martínez ◽  
Liliana Ortiz-Lozada ◽  
Frederico S. Neves ◽  
...  

AbstractBoth decreases in compositional similarity with increasing geographic distances between sites (i.e. distance–decay relationship) and vertical stratification of species composition are key issues in ecology. However, the intersection between these two trends has scarcely been investigated. Here we use identical sampling methods in the canopy and at ground level in a tropical rainforest remnant on the coast of the Gulf of Mexico to evaluate, for the first time, a distance–decay relationship within vertical strata in insect assemblages. We found that the ant assemblage was vertically stratified; ant species richness was higher at ground level than in the canopy, and the species composition differed between the two vertical strata. Moreover, we observed that β-diversity increased with geographic distance at ground level, but not in the canopy strata. However, contrary to our prediction, there was less species turnover (lower β-diversity) between vertical strata than between trees. These findings may reflect differences in the dispersal capacity and nest habit of ants from each vertical stratum, and also habitat heterogeneity on the horizontal scale, e.g. the species of sampled trees. Our results illustrate the importance of sampling more than one vertical stratum to understand the spatial distribution patterns of biological diversity in tropical rainforests.


The Condor ◽  
2021 ◽  
Author(s):  
Kyle D Kittelberger ◽  
Montague H C Neate-Clegg ◽  
Evan R Buechley ◽  
Çağan Hakkı Şekercioğlu

Abstract Tropical mountains are global hotspots for birdlife. However, there is a dearth of baseline avifaunal data along elevational gradients, particularly in Africa, limiting our ability to observe and assess changes over time in tropical montane avian communities. In this study, we undertook a multi-year assessment of understory birds along a 1,750 m elevational gradient (1,430–3,186 m) in an Afrotropical moist evergreen montane forest within Ethiopia’s Bale Mountains. Analyzing 6 years of systematic bird-banding data from 5 sites, we describe the patterns of species richness, abundance, community composition, and demographic rates over space and time. We found bimodal patterns in observed and estimated species richness across the elevational gradient (peaking at 1,430 and 2,388 m), although no sites reached asymptotic species richness throughout the study. Species turnover was high across the gradient, though forested sites at mid-elevations resembled each other in species composition. We found significant variation across sites in bird abundance in some of the dietary and habitat guilds. However, we did not find any significant trends in species richness or guild abundances over time. For the majority of analyzed species, capture rates did not change over time and there were no changes in species’ mean elevations. Population growth rates, recruitment rates, and apparent survival rates averaged 1.02, 0.52, and 0.51 respectively, and there were no elevational patterns in demographic rates. This study establishes a multi-year baseline for Afrotropical birds along an elevational gradient in an under-studied international biodiversity hotspot. These data will be critical in assessing the long-term responses of tropical montane birdlife to climate change and habitat degradation.


2017 ◽  
Vol 63 (2) ◽  
pp. 8-16 ◽  
Author(s):  
Corrado Battisti ◽  
Marco Giardini ◽  
Francesca Marini ◽  
Lorena Di Rocco ◽  
Giuseppe Dodaro ◽  
...  

We reported a study on breeding birds occurring inside an 80 m-deep karst sinkhole, with the characterization of the assemblages recorded along its semi-vertical slopes from the upper edge until the bottom. The internal sides of the sinkhole have been vertically subdivided in four belts about 20 m high. The highest belt (at the upper edge of the cenote) showed the highest values in mean number of bird detections, mean and normalized species richness, and Shannon diversity index. The averaged values of number of detections and species richness significantly differ among belts. Species turnover (Cody’s β-diversity) was maximum between the highest belts. Whittaker plots showed a marked difference among assemblages shaping from broken-stick model to geometric series, and explicited a spatial progressive stress with a disruption in evenness towards the deepest belts. Bird assemblages evidenced a nested subset structure with deeper belts containing successive subsets of the species occurring in the upper belts. We hypothesize that, at least during the daytime in breeding season, the observed non-random distribution of species along the vertical stratification is likely due to (i) the progressive simplification both of the floristic composition and vegetation structure, and (ii) the paucity of sunlight as resources from the upper edge to the inner side of the cenote.


2021 ◽  
Vol 19 (3) ◽  
Author(s):  
João D. Ferraz ◽  
Armando C. R. Casimiro ◽  
Diego A. Z. Garcia ◽  
Alan D. Pereira ◽  
Lucas R. Jarduli ◽  
...  

Abstract We evaluated the fish composition and ecological attributes of the ichthyofauna collected in a limnological zone of the Taquaruçu Reservoir, lower Paranapanema River. Information about the fish community was updated when compared to the previous study (2006). Non-metric multidimensional scaling (NMDS) showed differences in species composition between periods and community weighted means (CWMs) exhibited changes in functional composition over time. Four functional indices were used in the principal coordinate analysis (PcoA) to measure changes in the functional space of species, whereas functional β-diversity inspected differences in the traits composition between the periods. 1,203 individuals were sampled of 43 species, being 16 non-native and 14 new records. Compared to 2006, 27 species were absent, most of them native to Loricariidae and Anostomidae, while Curimatidae and Pimelodidae decreased in abundance. Functional indexes showed a reduction in functional diversity, whereas new species records exhibited functional redundancy. It might have occurred a simplification of the fish community over time, excluding the migratory and specialists species such as the herbivores and detritivores. Accordingly, we concluded that the ichthyofauna of the Taquaruçu Reservoir might have been undergoing a process towards biotic homogenization.


2020 ◽  
Author(s):  
Devin R. Leopold ◽  
Kabir G. Peay ◽  
Peter M. Vitousek ◽  
Tadashi Fukami

AbstractEricaceous plants rely on ericoid mycorrhizal fungi for nutrient acquisition. However, the factors that affect the composition and structure of these fungal communities remain largely unknown. Here, we use a 4.1-myr soil chronosequence in Hawaii to test the hypothesis that changes in nutrient availability with soil age determine the diversity and species composition of fungi associated with ericoid roots. We sampled roots of a native Hawaiian plant, Vaccinium calycinum, and used DNA metabarcoding to quantify changes in fungal diversity and species composition. We also used a fertilization experiment at the youngest and oldest sites to assess the importance of nutrient limitation. We found an increase in diversity and a clear pattern of species turnover across the chronosequence, driven largely by putative ericoid mycorrhizal fungi. Fertilization with nitrogen at the youngest site and phosphorus at the oldest site reduced total fungal diversity, suggesting a direct role of nutrient limitation. Our results also reveal the presence of novel fungal species associated with Hawaiian Ericaceae and suggest a greater importance of phosphorus availability for communities of ericoid mycorrhizal fungi than is generally assumed.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 680 ◽  
Author(s):  
Liangliang Huang ◽  
Jian Huang ◽  
Zhiqiang Wu ◽  
Yuanmin Mo ◽  
Qi Zou ◽  
...  

Beta diversity partitioning has currently received much attention in research of fish assemblages. However, the main drivers, especially the contribution of spatial and hydrological variables for species composition and beta diversity of fish assemblages are less well studied. To link species composition to multiple abiotic variables (i.e., local environmental variables, hydrological variables, and spatial variables), the relative roles of abiotic variables in shaping fish species composition and beta diversity (i.e., overall turnover, replacement, and nestedness) were investigated in the upstream Lijiang River. Species composition showed significant correlations with environmental, hydrological, and spatial variables, and variation partitioning revealed that the local environmental and spatial variables outperformed hydrological variables, and especially abiotic variables explained a substantial part of the variation in the fish composition (43.2%). The overall species turnover was driven mostly by replacement (87.9% and 93.7% for Sørensen and Jaccard indices, respectively) rather than nestedness. Mantel tests indicated that the overall species turnover (ßSOR and ßJAC) and replacement (ßSIM and ßJTU) were significantly related to hydrological, environmental, and spatial heterogeneity, whereas nestedness (ßSNE or ßJNE) was insignificantly correlated with abiotic variables (P > 0.05). Moreover, the pure effect of spatial variables on overall species turnover (ßSOR and ßJAC) and replacement (ßSIM and ßJTU), and the pure effect of hydrological variables on replacement (ßSIM and ßJTU), were not important (P > 0.05). Our findings demonstrated the relative importance of interactions among environmental, hydrological, and spatial variables in structuring fish assemblages in headwater streams; these fish assemblages tend to be compositionally distinct, rather than nested derivatives of one another. Our results, therefore, indicate that maintaining natural flow dynamics and habitat continuity are of vital importance for conservation of fish assemblages and diversity in headwater streams.


Insects ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 25 ◽  
Author(s):  
Zsolt Tóth ◽  
Elisabeth Hornung

Urbanization, as a major cause of local species extinction and biotic homogenization, drastically alters soil life. Millipedes are a key group of soil macrodetritivores and significantly influence soil quality, mainly through their essential role in nutrient cycling. Therefore, studying their taxonomic and functional responses to urban disturbance is crucial, as they contribute to the provision of several soil-related ecosystem services in cities. Differently degraded rural, urban forests and other woody patches (e.g., parks, gardens, and cemeteries) were sampled on Buda and Pest sides of the Budapest metropolitan area divided by the Danube River. We measured the most relevant physical and chemical properties of topsoil to characterize habitats. We applied an urbanization index based on vegetation cover and built-up area of the study sites to quantify urban intensity. The composition of the assemblages was determined by the division of the city along the Danube. Urbanization was associated with a reduction in species and functional richness of millipedes on both sides of Budapest. β diversity and species turnover increased with urban intensity. Urban disturbance was the main driver in assembly of taxonomic and functional community composition. A new species (Cylindroiulus caeruleocinctus (Wood, 1864)) to the fauna of Budapest was found. Detritivore invertebrates depend on leaf litter and other dead organic matter types, therefore microsites providing these resources greatly improve their survival. Due to increasing urban disturbance, it is recommended to provide appropriate detritus and shelter sites as part of the management of green spaces in order to maintain species richness, abundance, and function of species.


Author(s):  
David M. Parry ◽  
Michael A. Kendall ◽  
Ashley A. Rowden ◽  
Stephen Widdicombe

Species body size spectra have been constructed for macrofauna assemblages from four sites with contrasting sediment granulometry and heterogeneity in and around Plymouth Sound. The number of species and species turnover (β diversity) were higher on coarse sediment. While the fauna were distinct between sites, the median geometric size-class was conservative (class 14; 0.153–0.305 mg dry blotted weight). Only one site had significantly lower heterogeneity within the species size spectrum, yet this was the most heterogeneous sediment. As such, we were unable to reject the null hypothesis that species body size distribution patterns are conservative despite differences in sediment granulometry and heterogeneity.


Sign in / Sign up

Export Citation Format

Share Document