Shape variation of the prawn Macrobrachium jelskii (Palaemonidae: Decapoda) in the Neotropical semiarid drainages: an intra- and inter-basin investigation

2021 ◽  
Vol 72 (1) ◽  
pp. 84
Author(s):  
Sávio A. S. N. Moraes ◽  
Carlos E. R. D. Alencar ◽  
Sergio M. Q. Lima ◽  
Fúlvio A. M. Freire

The present study aims to show the intra- and inter-basin body-shape variations of the freshwater prawn Macrobrachium jelskii (Miers, 1877) in Brazilian Neotropical semiarid basins, quantifying relations to address if its occurrence is old and natural or recent and artificial (anthropic). We used a geometric-morphometric tool to explore patterns of shape variation of the cephalothorax, abdomen and cheliped regarding eco-evolutionary traces (sexual dimorphism, hydrodynamism and geographical isolation) among the drainages. The sexual shape dimorphism was observed in cephalothorax and abdomen of females, which presented more horizontally stretched than in males, possibly favouring gonadal development, vitellogenesis and egg attachment. No apparent hydrodynamic trend was observed in the morpho-space. Moreover, no consensus was shown in the morpho-space about the geographic isolation in semiarid basins regarding the three body-structure planes. However, the abdominal plane indicates a low population/basin structure, which can be an indirect reflection of variations of vitellogenesis in eggs modulated by environmental factors. Furthermore, morphometric variations show low phenotypic plasticity, which is supported by the literature, indicating a scenario of non-natural distribution.

2017 ◽  
Vol 65 (2) ◽  
Author(s):  
Caleb D. McMahan ◽  
Justin Kutz ◽  
Christopher Murray ◽  
Prosanta Chakrabarty ◽  
Aaron Geheber ◽  
...  

Vieja melanura is a Neotropical cichlid occurring in the Petén-lake district systems of Guatemala, as well as the Río Grijalva-Usumacinta basin, and other systems in Southern México, Belize, and Guatemala. A caudal stripe, extending forward from the caudal peduncle, is characteristic of this species. This stripe is sloped downward in nearly all individuals of V. melanura, but the degree of the slope is highly variable throughout its range. The slope and shape of the stripe has previously been used in diagnosing and differentiating between species of Vieja. The purpose of this study was to use objective methods to investigate morphological variation in the caudal stripe and body shape throughout the range of V. melanura. We studied geometric morphometric analyses of body shape and empirical measurements of the slope of the caudal stripe in 215 specimens of V. melanura. We also used the mitochondrial cytochrome b marker to study population level patterns within V. melanura. Results from our analyses showed significant geographic variation in body shape and patterns of coloration with little mitochondrial phylogeographic structure. These patterns likely correspond to differences in riverine habitats throughout the species’ distribution. In conclusion, these results can be used to inform other studies of color and shape variation as it applies to taxonomy and systematics.


2019 ◽  
Vol 188 (1) ◽  
pp. 148-162 ◽  
Author(s):  
Carmelo Fruciano ◽  
Dominik Schmidt ◽  
Marcia Maria Ramírez Sanchez ◽  
Witold Morek ◽  
Zamira Avila Valle ◽  
...  

Abstract In geometric morphometrics, the extent of variation attributable to non-biological causes (i.e. measurement error) is sometimes overlooked. The effects of this variation on downstream statistical analyses are also largely unknown. In particular, it is unclear whether specimen preservation induces substantial variation in shape and whether such variation affects downstream statistical inference. Using a combination of empirical fish body shape data and realistic simulations, we show that preservation introduces substantial artefactual variation and significant non-random error (i.e. bias). Most changes in shape occur when fresh fish are frozen and thawed, whereas a smaller change in shape is observed when frozen and thawed fish are fixed in formalin and transferred to ethanol. Surprisingly, we also show that, in our case, preservation produces only minor effects on three downstream analyses of shape variation: classification using canonical variate analysis, permutation tests of differences in means and computations of differences in mean shape between groups. Even mixing of differently preserved specimens has a relatively small effect on downstream analyses. However, we suggest that mixing fish with different preservation should still be avoided and discuss the conditions in which this practice might be justified.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 185
Author(s):  
Carolina Vilaseca ◽  
Marco A. Méndez ◽  
Carlos F. Pinto ◽  
Darija Lemic ◽  
Hugo A. Benítez

Morphometrics has been used on Triatomines, a well-known phenotypically variable insect, to understand the process of morphological plasticity and infer the changes of this phenomenon. The following research was carried out in two regions of the inter-Andean valleys and two Chaco regions of Chuquisaca-Bolivia. Triatoma infestans adults were collected from the peridomestic (pens and chicken coops) along a geographic gradient in order to evaluate the morphological differentiation between groups and their pattern of sexual shape dimorphism. Geometric morphometric methods were applied on the wings and heads of T. infestans. The main findings include that we proved sexual dimorphism in heads and wings, determined the impact of environmental factors on size and shape and validated the impact of nutrition on head shape variation. These results show that geometric morphometric procedures can be used to provide key insight into the biological adaptation of T. infestans on different biotic (nutrition) and abiotic (environment) conditions, which could serve in understanding and evaluating infestation processes and further vector control programs.


2019 ◽  
Vol 38 (6) ◽  
pp. 1-12 ◽  
Author(s):  
Jungdam Won ◽  
Jehee Lee
Keyword(s):  

2020 ◽  
Vol 17 (163) ◽  
pp. 20190721
Author(s):  
J. Larsson ◽  
A. M. Westram ◽  
S. Bengmark ◽  
T. Lundh ◽  
R. K. Butlin

The growth of snail shells can be described by simple mathematical rules. Variation in a few parameters can explain much of the diversity of shell shapes seen in nature. However, empirical studies of gastropod shell shape variation typically use geometric morphometric approaches, which do not capture this growth pattern. We have developed a way to infer a set of developmentally descriptive shape parameters based on three-dimensional logarithmic helicospiral growth and using landmarks from two-dimensional shell images as input. We demonstrate the utility of this approach, and compare it to the geometric morphometric approach, using a large set of Littorina saxatilis shells in which locally adapted populations differ in shape. Our method can be modified easily to make it applicable to a wide range of shell forms, which would allow for investigations of the similarities and differences between and within many different species of gastropods.


1996 ◽  
Vol 597 (2) ◽  
pp. 197-211 ◽  
Author(s):  
N.B. Shul'gina ◽  
B.V. Danilin ◽  
V.D. Efros ◽  
J.M. Bang ◽  
J.S. Vaagen ◽  
...  
Keyword(s):  

2017 ◽  
Vol 75 (2) ◽  
pp. 711-718
Author(s):  
George Geladakis ◽  
Nikolaos Nikolioudakis ◽  
George Koumoundouros ◽  
Stylianos Somarakis

Abstract Morphometric characters have traditionally been used to describe the population structure of fishes. Body shape variation, which is often environmentally induced, may provide a good record of short-term population structuring. However, factors unrelated to environmental or genetic influences on body morphology may complicate sampling and the use of morphometric features for stock discrimination. In the present study, we used geometric morphometric variables to compare the European sardine Sardina pilchardus putative stocks of the Aegean and Ionian Seas (eastern Mediterranean). Landmark data of fish collected at seven different sites were subjected to canonical analysis of principal coordinates (CAP). The average body condition of sardines from these sites was strongly and linearly related to corresponding scores along CAP1, the axis exhibiting the highest correlation with the morphometric data cloud. The average scores along CAP2 and CAP3 appeared to be linked to morphological differentiation related to temperature effects and prey availability (mesozooplankton biomass). Despite the primary and confounding effect of body condition, discrimination of different morphotypes corresponding to the Aegean and the Ionian Sea stocks was highly significant with 81% correct reallocations for the respective CAP model.


Author(s):  
Valentina P. Vetrova ◽  
◽  
Alexey P. Barchenkov ◽  
Nadezhda V. Sinelnikova ◽  
◽  
...  

Geometric morphometric analysis of shape variation in the cone scales of two closely related larch species, Larix dahurica Laws. (=Larix gmelinii (Rupr.) Rupr) and L. cajanderi Mayr, was carried out. The data on the taxonomy and distribution of L. dahurica and L. cajanderi are contradictory. The taxonomic status of L. cajanderi has been confirmed by the genetic and morphological studies performed in Russia and based on considerable evidence, but the species has not been recognized internationally, being considered as a synonym of Larix gmelinii var. gmelinii. In the systematics of larch, morphological characters of the generative organs are mainly used as diagnostic markers, among the most important being the shape variation of the cone scales. The aim of this study was to test geometric morphometrics as a tool for analyzing differentiation of L. dahurica and L. cajanderi in the shape of their cone scales. Characterization of shape variations in cone scales using geometric morphometric methods consists in digitizing points along an outline of scales followed by analysis of partial warps, describing individual differences in coordinates of the outline points. We studied the populations of L. dahurica from Evenkia and the Trans-Baikal region and six L. cajanderi populations from Yakutia and Magadan Oblast. In each population, we analyzed samples of 100-150 cones collected from 20-30 trees. Scales taken from the middle part of the cones were scanned using an Epson Perfection V500 Photo. On the scanned images, outline points were placed with a TPSDig program (Rolf, 2010), using angular algorithm (Oreshkova et al., 2015). The data were processed and analyzed using Integrated Morphometrics Programs (IMP) software (http://www.canisius.edu/~sheets/ morphsoft.html, Sheets, 2001), following the guidelines on geometric morphometrics in biology (Pavlinov, Mikeshina, 2002; Zelditch et al., 2004). Initial coordinates of the scale landmarks were aligned with the mean structure for L. dahurica and L. cajanderi cone scales using Procrustes superimposition in the CoordGen6 program. PCA based on covariances of partial warp scores was applied to reveal directions of variation in the shape of the cone scales. The relative deformations of the cone scales (PCA scores) were used as shape variables for statistical comparisons of these two larch species with canonical discriminant analysis. Morphotypes of the cone scales were distinguished in L. dahurica populations by pairwise comparison of samples from trees in the TwoGroup6h program using Bootstrap resampling-based Goodall’s F-test (Sheets, 2001). Samples from the trees in which the cone scales differed significantly (p < 0.01) were considered to belong to different morphotypes. Morphotypes distinguished in L. dahurica populations were compared with the morphotypes that we had previously determined in L. cajanderi populations. The composition and the frequency of occurrence of morphotypes were used to determine phenotypic distances between populations (Zhivotovskii, 1991). Multidimensional scaling matrix of the phenotypic distances was applied for ordination of larch populations. In this research, we revealed differentiation of L. dahurica and L. cajanderi using geometric morphometric analysis of the shape variation of cone scales. The results of PCA of partial warp scores exposed four principal components, which account for 90% of total explained variance in the shape of the cone scales in the two larch species. Graphical representations of these shape transformations in the vector form characterized directions of shape variability in scales corresponding to the maximum and minimum values of four principal components (See Fig. 2). PCA-ordination of the larch populations revealed some difference in the shape variation of the cone scales in L. dahurica and L. cajanderi (See Fig. 3). The results of canonical discriminant analysis of relative deformations of scales showed differentiation of the populations of the two larch species (See Fig. 4). Eleven morphotypes were identified in L. dahurica cones from Evenkia and nine morphotypes in the Ingoda population, three of the morphotypes being common for both populations (See Fig. 5). The shape of L. dahurica cone scales varied from spatulate to oval and their apical margins from weakly sinuate to distinctly sinuate. The Trans-Baikal population was dominated by scales with obtuse (truncate) and rounded apexes. The obtained morphotypes were compared with 25 cone scale morphotypes previously distinguished in the Yakut and the Magadan L. cajanderi populations (See Fig. 3). Four similar morphotypes of cone scales were revealed in the North-Yeniseisk population of L. dahurica and the Yakut populations of L. cajanderi. The differences between them in the populations of the two larch species were nonsignificant (p > 0.01). All morphotypes of cone scales from the Ingoda population of L. dahurica differed significantly from L. cajanderi cone scale morphotypes. The results of multidimensional scaling phenotypic distance matrix calculated based on the similarity of morphotypes of L. dahurica and L. cajanderi populations were consistent with the results of their differentiation based on relative deformations of scales obtained using canonical discriminant analysis (See Fig. 4 and Fig. 7). In spite of the differences in the shape of the cone scales between the North-Yeniseisk and the Trans-Baikal populations of L. dahurica, they both differed from L. cajanderi populations. Thus, phenotypic analysis confirmed differentiation of these two larch species. Despite the similarities between a number of morphotypes, the Yakut L. cajanderi populations were differentiated from L. dahurica populations. Significant differences were noted between intraspecific groups: between L. cajanderi populations from Okhotsk-Kolyma Upland and Yakutia and between L. dahurica populations from Evenkia and the Trans-Baikal region (See Fig. 4). The similarities between species and intraspecific differences may be attributed to the ongoing processes of hybridization and species formation in the region where the ranges of the larches overlap with the ranges of L. czekanowskii Szafer and L. dahurica×L. cajanderi hybrids. Geometric morphometrics can be used as an effective tool for analyzing differentiation of L. dahurica and L. cajanderi in the shape of their cone scales.


Sign in / Sign up

Export Citation Format

Share Document