Limnology of rearing ponds for Australian fish larvae: Relationships among water quality, phytoplankton, zooplankton, and the growth of larval fish

1993 ◽  
Vol 44 (4) ◽  
pp. 537 ◽  
Author(s):  
DA Culver ◽  
MC Geddes

Fertilization of earthen ponds used to rear the larvae of golden perch, Macquaria ambigua, and silver perch, Bidyanus bidyanus, resulted in phytoplankton blooms dominated by the cyanobacterium Anabaena possibly because of a low N:P ratio. There was a zooplankton succession of rotifers (mostly Brachionus), Moina, Boeckella and Mesocyclops, and then Daphnia. An increase in Daphnia correlated with a decline in Anabaena, suggesting grazing on that cyanobacterium. Golden perch larvae included copepods in their diet whereas silver perch did not, and this was reflected in lower Boeckella numbers in the golden perch ponds. There was sufficient zooplankton forage, supplemented by chironomid larvae in the later stages of the rearing ponds, for fish growth. The limnological conditions and zooplankton communities in these ponds provide a model for evaluating nursery grounds for these fish.

2014 ◽  
Vol 72 (2) ◽  
pp. 359-373 ◽  
Author(s):  
Pierre Pepin ◽  
Dominique Robert ◽  
Caroline Bouchard ◽  
John F. Dower ◽  
Marianne Falardeau ◽  
...  

Abstract Variations in larval fish growth rates are largely the result of variability in biotic and abiotic characteristics of the feeding environment experienced by each individual. An assessment of an individual's overall feeding success (i.e. accumulation of utilizable organic matter) can best be achieved at the time of capture when the relationships among environment, short-term feeding success as defined by gut content and long-term feeding success as defined by accumulated growth can be contrasted. Here, we investigated the relationships between average growth, feeding success, and variability in individual growth and feeding rates across a range of taxa based on a synthesis of studies in which stomach content and otolith growth were measured in the same individuals. Instantaneous measures of feeding success were highly variable and demonstrated a positive yet somewhat limited association with growth rates across all taxa. The strength of the feeding-growth relationships among taxa, and cohorts within taxa, was reflected in the autocorrelation of individual growth rates, suggesting that stable growth was achieved through consistent feeding success. However, when viewed at the individual level, faster growth was achieved in individuals with more variable growth rates, and by inference more variable past feeding success. The dichotomy in these underlying relationships may point to the importance of stochastic events in the development of exceptional individuals in a population, and may be linked to how surplus energy is allocated to individual growth rates. The positive correlation found between feeding success and growth in all taxa is consistent with the growth-survival paradigm for the larval stage of fish. However, both the correlation between feeding success and growth and the serial correlation of growth time-series was greatest in fast-growing species, suggesting that the potential for an early “critical period” regulating survival varies among species, reaching a maximum in fast-growing fish.


2020 ◽  
Vol 650 ◽  
pp. 63-80 ◽  
Author(s):  
KE Axler ◽  
S Sponaugle ◽  
F Hernandez ◽  
C Culpepper ◽  
RK Cowen

Freshwater input into nearshore continental shelf waters from coastal river-estuarine plumes can greatly alter the physical and trophic environments experienced by fish larvae. However, the biological consequences of plume encounter on larval fish survival remain equivocal, largely due to the extreme variability of these systems but also because traditional sampling techniques alone are too coarse to effectively characterize the dynamic biophysical environment at spatiotemporal scales relevant to individual larvae. Using a multidimensional approach, we simultaneously collected in situ imagery and net samples of larval fishes and zooplankton from the Mobile Bay plume (Alabama, USA) and ambient continental shelf waters during a high discharge event (8-11 April 2016). We measured the effects of plume encounter on growth and condition of larval striped anchovy Anchoa hepsetus and sand seatrout Cynoscion arenarius, 2 prominent nearshore species in the northern Gulf of Mexico. Size-frequency distributions of both species indicated that larger individuals were present in shelf waters but absent from plume waters. Otolith microstructure analysis revealed that recent growth of both focal species was significantly lower for plume-collected larvae during the last few days prior to capture. Furthermore, plume larvae were in poorer morphometric condition (skinnier at length) than their shelf counterparts, despite the fact that there were higher concentrations of zooplankton prey in plume water masses. Taken together, these results suggest that elevated prey concentrations do not necessarily translate to higher growth and condition. High turbulence and turbidity within the plume may physically inhibit the prey capture ability and feeding success of fish larvae.


2016 ◽  
Vol 13 (116) ◽  
pp. 20160068 ◽  
Author(s):  
Gen Li ◽  
Ulrike K. Müller ◽  
Johan L. van Leeuwen ◽  
Hao Liu

Larvae of bony fish swim in the intermediate Reynolds number ( Re ) regime, using body- and caudal-fin undulation to propel themselves. They share a median fin fold that transforms into separate median fins as they grow into juveniles. The fin fold was suggested to be an adaption for locomotion in the intermediate Reynolds regime, but its fluid-dynamic role is still enigmatic. Using three-dimensional fluid-dynamic computations, we quantified the swimming trajectory from body-shape changes during cyclic swimming of larval fish. We predicted unsteady vortices around the upper and lower edges of the fin fold, and identified similar vortices around real larvae with particle image velocimetry. We show that thrust contributions on the body peak adjacent to the upper and lower edges of the fin fold where large left–right pressure differences occur in concert with the periodical generation and shedding of edge vortices. The fin fold enhances effective flow separation and drag-based thrust. Along the body, net thrust is generated in multiple zones posterior to the centre of mass. Counterfactual simulations exploring the effect of having a fin fold across a range of Reynolds numbers show that the fin fold helps larvae achieve high swimming speeds, yet requires high power. We conclude that propulsion in larval fish partly relies on unsteady high-intensity vortices along the upper and lower edges of the fin fold, providing a functional explanation for the omnipresence of the fin fold in bony-fish larvae.


2014 ◽  
Vol 71 (9) ◽  
pp. 2530-2538 ◽  
Author(s):  
Emmanuel de Braux ◽  
Fletcher Warren-Myers ◽  
Tim Dempster ◽  
Per Gunnar Fjelldal ◽  
Tom Hansen ◽  
...  

Abstract Otolith marking with enriched stable isotopes via immersion is a recent method of batch marking larval fish for a range of research and industrial applications. However, current immersion times and isotope concentrations required to successfully mark an otolith limit the utility of this technique. Osmotic induction improves incorporation and reduces immersion time for some chemical markers, but its effects on isotope incorporation into otoliths are unknown. Here, we tested the effects of osmotic induction over a range of different isotope concentrations and immersion times on relative mark success and strength for 26Mg:24Mg, 86Sr:88Sr and 137Ba:138Ba on Atlantic salmon (Salmo salar) larvae. 71% and 100% mark success were achieved after 1 h of immersion for 86Sr (75 µg L−1) and 137Ba (30 µg L−1) isotopes, respectively. Compared with conventional immersion, osmotic induction improved overall mark strength for 86Sr and 137Ba isotopes by 26–116%, although this effect was only observed after 12 h of immersion and predominately for 86Sr. The results demonstrate that osmotic induction reduces immersion times and the concentrations of isotope required to achieve successful marks. Osmotically induced isotope labels via larval immersion may prove a rapid and cost-effective way of batch marking fish larvae across a range of potential applications.


2002 ◽  
Vol 32 (3) ◽  
pp. 499-499 ◽  
Author(s):  
Rosseval Galdino LEITE ◽  
Carlos A.R.M. ARAUJO-LIMA

Information on larval fish feeding is essential for understanding their trophic relations, including the management in conditions totally or partially controlled by humans. An experiment was designed to evaluate the larval diets of three commercially important species. Four varzea-lakes and the adjacent river were sampled with bongo and hand nets from January 1993 to November 1995. Larval diets were evaluated by length-classes and capture sites, and were tested by two factor ANOVA. The larvae were feeding in all habitats, except in the flooded forests. The three species had different diets, which varied with their length and lake. The rotifers were the main initial food item of the three species, replaced by fish larvae in Brycon cephalus, cladocerans in Triportheus elongatus and detritus in Semaprochilodus insignis. The increase of the ingestion limit, as the larvae grew, was higher than the increase in the consumed prey size for the three species.


Author(s):  
M Monteiro ◽  
U M Azeiteiro ◽  
F Martinho ◽  
M A Pardal ◽  
A L Primo

Abstract Ichthyoplankton assemblages are key components of estuaries worldwide, playing a vital role as nurseries for fish larvae. Nonetheless, estuaries can be highly affected by ongoing climate change. Impacts of climate variability on ichthyoplankton assemblages will have consequences for marine pelagic food webs and fish populations biology, namely recruitment. This study aims to investigate the influence of environmental variability on an interannual abundance of ichthyoplankton assemblages of the Mondego estuary (Portugal). For this, an ichthyoplankton sampling programme of 13 years (2003–2015) along six distinct sampling stations was analysed to evaluate spatial, seasonal and interannual changes of ichthyoplankton distribution over periods of wet, regular and dry conditions. The ichthyoplanktonic community was dominated by Pomatoschistus spp. across all seasons and conditions, with higher larval abundances during summer and spring. Main changes were related to species seasonality and phenology as well as an increase in the number of marine species during extreme events. The larval fish community showed a strong relationship with the regional and local environment over the study, presenting a distinct yet highly variable structure during the 2009–2013 period. Reported changes will likely trigger major changes in species dominance and abundance, with clear ecological and socio-economic implications.


2020 ◽  
Vol 42 (4) ◽  
pp. 457-466
Author(s):  
Rachel E Wilborn ◽  
Christopher N Rooper ◽  
Pam Goddard ◽  
Kresimir Williams ◽  
Rick Towler

Abstract Deep-water larval fish and zooplankton utilize structurally complex, cold-water coral and sponge (CWCS) habitats as refuges, nurseries and feeding grounds. Fine-scale sampling of these habitats for larval fish and zooplankton has proven difficult. This study implemented a newly designed, autonomous, noninvasive plankton pump sampler that collected large mesozooplankton within 1 m of the seafloor. It was successfully deployed in the western Gulf of Alaska between the Shumagin Islands (~158°W) and Samalga Pass (−170°W), and collected in situ zooplankton from diverse benthic communities (coral, sponge and bare substrates) at depths in excess of 100 m. Key design parameters of the plankton pump were its ability to be deployed from ships of opportunity, be untethered from the vessel during sampling and be deployed and retrieved in high-relief, rocky areas where CWCS are typically present. The plankton pump remains stationary while collecting from the water column, rests within 1 m of the seafloor and captures images of the surrounding habitat and substrate. This plankton pump design is a low-cost, highly portable solution for assessing the role of benthic habitat in the life cycle of mesozooplankton, a linkage that has been relatively underexplored due to the difficulty in obtaining near-bottom samples.


2018 ◽  
Vol 134 (3-4) ◽  
pp. 1-9 ◽  
Author(s):  
Kyle J Hoffman ◽  
Juliana M Harding

Abstract Planktonic reef fish larvae locate and orient to reefs during settlement. Consequently, metamorphosis occurs in appropriate juvenile and/or adult habitats. Larval fish use otoliths for hearing (sagittae and asterisci) as well as equilibrium (lapilli) required for directional swimming. Striped blenny (Chasmodes bosquianus) and naked goby (Gobiosoma bosc) larvae, settled individuals, and juveniles were used to describe otolith ontogeny from hatching through settlement, the transition from pelagic to benthic habitats, and metamorphosis. Larvae hatched from nests collected in North Inlet estuary, SC, were cultured from May through July in 2012 and 2013 at ambient temperatures. Sagittae and lapilli were present at hatching in both species. Asterisci were only observed in settlement (gobies and blennies) or metamorphosis (blennies) stage fishes, regardless of age (days post-hatch). Otoliths within a pair were symmetrical. Fish total length increased faster than sagittae otolith length in settlement stage blennies and postflexion gobies. The allometric model explained ∼90% of the variability in sagittae otolith length with total length for both species. Settlement occurred 15–20 days post-hatch in striped blennies and 19–27 days post-hatch in naked gobies. Asterisci were found in 100% of settlement stage striped blennies and 67% of naked gobies. We hypothesize that the presence of asterisci in settlement stage demersal oyster reef fishes facilitates identification of and orientation to suitable settlement habitats thereby enhancing recruitment success.


Sign in / Sign up

Export Citation Format

Share Document