scholarly journals New and Old Measurements of Electron Scattering in Atomic Hydrogen

1998 ◽  
Vol 51 (4) ◽  
pp. 633 ◽  
Author(s):  
J. F. Williams

A critical look is made of discrepancies and agreements between new and old measurements and theories for elastic and n = 2 excitation of atomic hydrogen by electron impact, mainly at 16·5, 54 and 100 eV. A discussion of earlier work indicates the contributions of Weigold and colleagues. The diffculties of observing and modelling small scattered fluxes at backward scattering angles and of making absolute cross section calibrations are noted. New measurements of elastic scattering at 16·5 eV confirm earlier measured angular distributions. An absolute calibration of the differential cross section at 16·5 eV gives agreement within one standard deviation with intermediate energy R-matrix and multi-pseudostate close coupling values. At 16·5 eV, measurements of the separate 2s and 2p differential cross sections and the lambda, R and I correlation parameters again support the values from those theories.

In proton-proton scattering, when both incident and target protons have polarizations of P 1 and P 2 respectively in a direction normal to the plane of scattering, the differential cross-section, σ, at angle θ is given by σ( θ ) = σ 0 ( θ ) {1 + ( P 1 + P 2 ) P 3 ( θ ) + P 1 P 2 C NN ( θ )}. P 3 ( θ ) and C NN ( θ ) are the polarization and spin-correlation parameters of proton-proton scattering, and are functions of incident proton energy and scattering angle. The Harwell synchrocyclotron provides a choice of two proton beams at an energy of 142MeV ( a ) high intensity P 1 = 0, and ( b ) low intensity P 1 = ±0.48. P 3 ( θ ) is a well-known quantity, and the two remaining unknowns, P 2 and C NN ( θ ) can be obtained by comparing differential cross-sections measured with beams ( a ) and ( b ). Somewhat higher precision is obtainable in such a measurement of the target polarization P 2 than by either of the existing solid-state methods (Schmugge & Jeffries 1962; Abragam, Borghini & Chapellier 1962).


1988 ◽  
Vol 66 (1) ◽  
pp. 82-85
Author(s):  
K. S. Baliyan ◽  
M. K. Srivastava

The recent triple differential cross-section data of Jung for the ionization of helium in the coplanar asymmetric geometry at 250 eV incident electron energy is analyzed within the framework of the second Born (B2) and modified Glauber (MG) approximations. At this energy B2 and MG results, although better than those obtained by using the first Born and Glauber approximations, do not lead to a satisfactory description of the experimental data in all the kinematic situations considered here.


Author(s):  
P.A. Crozier

Absolute inelastic scattering cross sections or mean free paths are often used in EELS analysis for determining elemental concentrations and specimen thickness. In most instances, theoretical values must be used because there have been few attempts to determine experimental scattering cross sections from solids under the conditions of interest to electron microscopist. In addition to providing data for spectral quantitation, absolute cross section measurements yields useful information on many of the approximations which are frequently involved in EELS analysis procedures. In this paper, experimental cross sections are presented for some inner-shell edges of Al, Cu, Ag and Au.Uniform thin films of the previously mentioned materials were prepared by vacuum evaporation onto microscope cover slips. The cover slips were weighed before and after evaporation to determine the mass thickness of the films. The estimated error in this method of determining mass thickness was ±7 x 107g/cm2. The films were floated off in water and mounted on Cu grids.


Atoms ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 27
Author(s):  
Jean-Paul Mosnier ◽  
Eugene T. Kennedy ◽  
Jean-Marc Bizau ◽  
Denis Cubaynes ◽  
Ségolène Guilbaud ◽  
...  

High-resolution K-shell photoionization cross-sections for the C-like atomic nitrogen ion (N+) are reported in the 398 eV (31.15 Å) to 450 eV (27.55 Å) energy (wavelength) range. The results were obtained from absolute ion-yield measurements using the SOLEIL synchrotron radiation facility for spectral bandpasses of 65 meV or 250 meV. In the photon energy region 398–403 eV, 1s⟶2p autoionizing resonance states dominated the cross section spectrum. Analyses of the experimental profiles yielded resonance strengths and Auger widths. In the 415–440 eV photon region 1s⟶(1s2s22p2 4P)np and 1s⟶(1s2s22p2 2P)np resonances forming well-developed Rydberg series up n=7 and n=8 , respectively, were identified in both the single and double ionization spectra. Theoretical photoionization cross-section calculations, performed using the R-matrix plus pseudo-states (RMPS) method and the multiconfiguration Dirac-Fock (MCDF) approach were bench marked against these high-resolution experimental results. Comparison of the state-of-the-art theoretical work with the experimental studies allowed the identification of new resonance features. Resonance strengths, energies and Auger widths (where available) are compared quantitatively with the theoretical values. Contributions from excited metastable states of the N+ ions were carefully considered throughout.


2009 ◽  
Vol 24 (02n03) ◽  
pp. 450-453
Author(s):  
◽  
T. SKORODKO ◽  
M. BASHKANOV ◽  
D. BOGOSLOWSKY ◽  
H. CALÉN ◽  
...  

The two-pion production in pp-collisions has been investigated in exclusive measurements from threshold up to Tp = 1.36 GeV . Total and differential cross sections have been obtained for the channels pnπ+π0, ppπ+π-, ppπ0π0 and also nnπ+π+. For intermediate incident energies Tp > 1 GeV , i.e. in the region, which is beyond the Roper excitation but at the onset of ΔΔ excitation the total ppπ0π0 cross section falls behind theoretical predictions by as much as an order of magnitude near 1.2 GeV, whereas the nnπ+π+ cross section is a factor of five larger than predicted. A model-unconstrained isospin decompostion of the cross section points to a significant contribution of an isospin 3/2 resonance other than the Δ(1232). As a possible candidate the Δ(1600) is discussed.


1996 ◽  
Vol 74 (7-8) ◽  
pp. 505-508 ◽  
Author(s):  
R. M. Finch ◽  
Á. Kövér ◽  
M. Charlton ◽  
G. Laricchia

Differential cross sections for elastic scattering and ionization in positron–argon collisions as a function of energy (40–150 eV) are reported at 60°. Of particular interest is the energy range 55–60 eV, where earlier measurements by the Detroit group found a drop in the elastic-scattering cross section of a factor of 2. This structure has been tentatively attributed to a cross channel-coupling effect with an open inelastic-scattering channel, most likely ionization. Our results indicate that ionization remains an important channel over the same energy range and only begins to decrease at an energy above 60 eV.


2014 ◽  
Vol 32 (5) ◽  
pp. 499-506 ◽  
Author(s):  
K. Axelsson ◽  
T. Sergienko ◽  
H. Nilsson ◽  
U. Brändström ◽  
K. Asamura ◽  
...  

Abstract. The auroral emission of the first negative system of N2+ at 427.8 nm is analyzed using simultaneous measurements from the ground with ALIS (Auroral Large Imaging System) and from space with optical (MAC) and particle (ESA) instruments of the Reimei satellite. The study has two main objectives. The first is validation of the absolute calibration of the ALIS and the Reimei MAC cameras. The other task is to evaluate different cross sections of the electron excitation of N2+ that are used for the modeling of the auroral 1N system emissions. The simultaneous measurements of the 427.8 nm emission by ALIS and Reimei imagers show excellent agreement, indicating that the calibration of the two instruments is correct. Comparison of the 427.8 nm emission intensity calculated using the incident electron flux measured by the Reimei particle instruments with intensities measured by the optical imagers show that the best match is reached with the cross section from Shemansky and Liu (2005).


Sign in / Sign up

Export Citation Format

Share Document