Preliminary predictions of the impacts of habitat area and catastrophes on the viability of Mahogany Glider Petaurus gracilis populations

1999 ◽  
Vol 5 (1) ◽  
pp. 56 ◽  
Author(s):  
Stephen M. Jackson

The population viability analysis (PVA) program VORTEX was used to examine the viability of different sized populations of the Mahogany Glider Petaurus gracilis, and to examine the impact of a one in a hundred year catastrophe (each requiring a different reserve size) of different severities on different sized populations. The PVA showed that populations up to 300 individuals (1 500 ha) have a negative population growth rate, high losses of genetic diversity and a greater than 5% chance of extinction within 100 years. Populations of 400?700 individuals (2 000?3 500 ha) showed a decreasing trend in population size suggesting they are likely to become extinct after 100 years. A population of 800 individuals (4 000 ha) was needed for the population size to stabilize. Sensitivity analysis showed adult mortality of greater than 25% to be important in decreasing the viability of populations. Populations of 400 were resistant to a one in 100 year catastrophe which had a 20% mortality and 20% decrease in reproduction. When the mortality was 70%, with 70% decrease in reproduction, a population of 1 000 still had a 12% chance of extinction. As only approximately 50% of the available habitat appears to be occupied, an area up to 8 000 ha (800 individuals) is suggested to be required to maintain viable populations of Mahogany Gliders. A number of management options are recommended including the retention of habitat, establishing corridors between key populations, and using fire to minimize rainforest expansion.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yashuai Zhang ◽  
Fang Wang ◽  
Zhenxia Cui ◽  
Min Li ◽  
Xia Li ◽  
...  

Abstract Background One of the most challenging tasks in wildlife conservation and management is clarifying which and how external and intrinsic factors influence wildlife demography and long-term viability. The wild population of the Crested Ibis (Nipponia nippon) has recovered to approximately 4400, and several reintroduction programs have been carried out in China, Japan and Korea. Population viability analysis on this endangered species has been limited to the wild population, showing that the long-term population growth is restricted by the carrying capacity and inbreeding. However, gaps in knowledge of the viability of the reintroduced population and its drivers in the release environment impede the identification of the most effective population-level priorities for aiding in species recovery. Methods The field monitoring data were collected from a reintroduced Crested Ibis population in Ningshan, China from 2007 to 2018. An individual-based VORTEX model (Version 10.3.5.0) was used to predict the future viability of the reintroduced population by incorporating adaptive patterns of ibis movement in relation to catastrophe frequency, mortality and sex ratio. Results The reintroduced population in Ningshan County is unlikely to go extinct in the next 50 years. The population size was estimated to be 367, and the population genetic diversity was estimated to be 0.97. Sensitivity analysis showed that population size and extinction probability were dependent on the carrying capacity and sex ratio. The carrying capacity is the main factor accounting for the population size and genetic diversity, while the sex ratio is the primary factor responsible for the population growth trend. Conclusions A viable population of the Crested Ibis can be established according to population viability analysis. Based on our results, conservation management should prioritize a balanced sex ratio, high-quality habitat and low mortality.


Author(s):  
Wu Bin ◽  
Wang Weiping ◽  
Wang Haihua ◽  
He Gang

Background: Lipotes vexillifer, is a functionally extinct species of freshwater dolphin commonly called as Baiji dolphin of Yanzte River, China. The dolphin is thought to be the first one of it’s kind driven to extinction due to the impact of humans. Yangtze Freshwater Dolphin Expedition carried out in the year 2006 revealed the species as functionally extinct. The présent study deals with the population viability analysis of the baiji dolphin using Vortex software and also by consulting historical materials and relevant literature to explore the possible causes of the functional extinction of the baiji in the Yangtze River. The findings are to provide guidance for the effective management of another freshwater mammal, the Yangtze finless porpoise. Methods: Population viability analysis of the baiji dolphin for various parameters were assessed using Vortex software and other published information and relevant literatures. The analysis were carried out to ascertain the possible causes of the functional extinction of the baiji in the Yangtze River. Result: Simulation models were employed to identify the reasons for extinction of Yangtze River baiji population by adopting viability retrospective method. The various parameters associated with the population analysis were included to derive logical conclusion. The minimum viable population of the Yangtze River baiji was also identified by adopting various simulation models. The present study is the first attempt to apply the 10,000-time iteration method to the baiji population survivability analysis.


2007 ◽  
Vol 13 (3) ◽  
pp. 189 ◽  
Author(s):  
Danial Lunney ◽  
Shaan Gresser ◽  
Lisa E. O'neill ◽  
Alison Matthews ◽  
Jonathan Rhodes

The Port Stephens Koala Phascolarctos cinereus population has been regarded as one of the strongholds for Koalas in New South Wales. This study applied population viability analysis to investigate the impact of fire and predation by dogs on the viability of the local population. The rapid decline of the modelled Koala population under basic assumptions throws the assumed security of such large populations into question. In all the modelled management scenarios, reducing mortality had more influence than any other factor. Reducing the severity and frequency of large catastrophic fires improved the probability of survival for the population, though the modelled population size still declined sharply. Any management action to improve Koala survival must be accompanied by a reduction in mortality from dog attacks. Fires and dogs will have an ever greater impact on Koala populations as coastal forests become more fragmented and isolated by urban development, and their combined control will be needed to complement land-use planning measures to address habitat loss and fragmentation.


1993 ◽  
Vol 20 (1) ◽  
pp. 67 ◽  
Author(s):  
DB Lindenmayer ◽  
RC Lacy ◽  
VC Thomas ◽  
TW Clark

Population Viability Analysis (PVA) uses computer modelling to simulate interacting deterministic and stochastic factors (e.g. demographic, genetic, spatial, environmental and catastrophic processes) that act on small populations and assess their long-term vulnerability to extinction. The computer program VORTEX was used in a PVA of Leadbeater's possum, Gymnobelideus leadbeateri McCoy, an endangered arboreal marsupial that is restricted to the montane ash forests of the central highlands of Victoria. PVA was used to examine the impacts of changes in the size of subpopulations and the effects of environmental variation. Our analyses demonstrated that an annual linear decline in the carrying capacity in all or parts of the habitat will lead to the extinction of G. leadbeateri in those areas. Mean time to extinction was related to the rate of annual decrease. This conclusion is of practical and management importance as there is presently a decline in suitable habitat because of an annual loss of more than 3.5% of trees with hollows, which provide nest sites for G. leadbeateri. Because nest sites are a factor that limits populations of G. leadbeateri, the species could be lost from large areas within the next 50 years. PVA was also used to determine the viability of populations in areas, such as oldgrowth forest, where there is not likely to be a steady decline in habitat carrying capacity resulting from the loss of trees with hollows. This allowed an analysis of the cumulative impacts of small population size, environmental variation and genetic factors, which showed that, for a 100-year projection, simulated populations of 200 animals or more remained demographically stable and experienced a less than 10% decline in predicted genetic variability. However, the relatively simplified nature of population modelling and the suite of assumptions that underpin VORTEX mean that the probability of extinction of populations of this size may be greater than determined in this study. As a result, it is possible that only populations of more than 200 animals may persist in the long term where suitable habitat can be conserved or established and subsequently maintained without a reduction in carrying capacity.


Mammalia ◽  
2020 ◽  
Vol 84 (5) ◽  
pp. 475-482
Author(s):  
Bárbara Cruz-Salazar ◽  
Lorena Ruiz-Montoya

AbstractWe studied the population viability of two common marsupials, Didelphis marsupialis and Didelphis virginiana, based on field data and published ecological and genetic information. Using the VORTEX v. 10. 2.6 program, a 100-year simulation was performed with 1000 iterations for five populations of D. marsupialis and six of D. virginiana. A low probability of extinction was observed in both species, particularly for D. virginiana (0.000–0.007). Population size is higher considering a metapopulation dynamics approach versus individual populations for the two marsupials: 498.25 individuals for D. marsupialis and 367.41 individuals for D. virginiana. The estimated mean genetic diversity was high for both D. marsupialis (He = 0.77–0.78) and D. virginiana (He = 0.79–0.82). The survival of both species over time could be expected to increase if a metapopulation dynamics is favored over the coming decades, despite a 1.3% loss rate of forest cover. The monitoring of population size and genetic diversity is highly recommended to validate the trends suggested by the model; this is especially true for D. marsupialis, a species associated with conserved areas that are becoming progressively less abundant. This research provides information on the responses of common mammalian species to environmental changes such as deforestation.


Sign in / Sign up

Export Citation Format

Share Document