scholarly journals Charge Exchange Collisions Involving Multielectron Atoms (Lithium and Sodium)

1968 ◽  
Vol 21 (6) ◽  
pp. 793 ◽  
Author(s):  
JG Lodge ◽  
RM May

The cross section for forming both ground state and excited state hydrogen atoms by charge exchange between protons and lithium or sodium atoms is calculated. These calculations are performed using the Brinkman-Kramers approximation along with a multiplicative correction factor; the target lithium and sodium atoms are first described by simple "effective-Z" wavefunctions, and then the lithium case is treated more accurately both by including the inner electrons and by using a more accurate numerical lithium wavefunction.

1968 ◽  
Vol 46 (4) ◽  
pp. 527-530 ◽  
Author(s):  
N. J. Friswell ◽  
R. A. Back

The Hg(63P1)-sensitized decomposition of HNCO vapor has been briefly studied at 26 °C with HNCO pressures from about 3 to 30 Torr. The products detected were the same as in the direct photolysis, CO, N2, and H2. The quantum yield of CO was appreciably less than unity, compared with a value of 1.5 in the direct photolysis under similar conditions. From this and other observations it is tentatively concluded that a single primary process occurs:[Formula: see text]From a study of the mercury-photosensitized reactions in mixtures of HNCO with H2, it was concluded that hydrogen atoms react with HNCO to form CO but not N2. The initial step is probably addition to form NH2CO. From the competition between reaction [1] and the corresponding quenching by H2, the cross section for reaction [1] was estimated to be 2.3 times that of hydrogen.


1989 ◽  
Vol 62 (16) ◽  
pp. 1837-1839 ◽  
Author(s):  
P. A. M. Gram ◽  
S. A. Wood ◽  
E. R. Kinney ◽  
S. Høibråten ◽  
P. Mansky ◽  
...  

1962 ◽  
Vol 3 (2) ◽  
pp. 62-63 ◽  
Author(s):  
L. Colli ◽  
F. Cristofori ◽  
G.E. Frigerio ◽  
P.G. Sona

1991 ◽  
Vol 244 ◽  
Author(s):  
Jau-Sheng Wang ◽  
Elias Snitzer ◽  
George H. Sigel

ABSTRACTThe results to be presented focus on the optimization of tellurite glass compositions which are suitable both for doping with erbium oxide as well as subsequent for fiber drawing. The laser related properties, such as fluorescence spectrum, lifetime, and optical transition cross sections will be presented. Judd-Ofelt parameters for erbium in the glasses have been exploited to predict fluorescence lifetime, excited state absorption(ESA), ground state absorption(GSA) and ground state fluorescence(GSF). For comparison, the absorption cross section, emission cross section, excited state absorption(ESA)/ground state absorption(GSA)(0.8μm pumping) and fluorescence terminating in the ground state(GSF)/excited state absorption(ESA) ratios are calculated for both Al2O3-SiO2 and tellurite glasses.


Author(s):  
Manel Hariz Belgacem ◽  
Elhabib Guedda ◽  
Haikel Jelassi

<sub></sub> In this paper we present our calculation of the cross section ionization by electron impact of C V, N VI and O VII. Using the Flexible Atomic Code (FAC), we obtain the cross sections for the ionization of these ions from the ground state 1<sup>1</sup>S, and from the unstable states 2<sup>1</sup>S and 2<sup>3</sup>S. Our results are in good agreement with those based on the Coulomb Born (CB) approximation and the available measurements.


2019 ◽  
Vol 10 ◽  
pp. 1
Author(s):  
S. Kossionides ◽  
G. Kaliambakos ◽  
R. Vlastou ◽  
C. T. Papadopoulos

The concentration and depth profile of Cu and S in patinna samples have been determined by using Nuclear Reaction Analysis (NRA) and Rutherford Backscattering Spectroscopy (RBS). For the NRA the differential cross section was mesaured for the 1327 keV 7-ray deexciting the third excited state to the ground state of 6 3Cu through the reaction 63Cu(p,p'7), as well as, for the 2230 keV γ-ray deexciting the first excited state to the ground state through the resonant reaction 32S(p,p'7). The mesaurements of both excitation functions were performed in the energy range 3.0 - 3.7 MeV in 20 keV steps and at an angle of 125°.


1976 ◽  
Vol 205 ◽  
pp. 634 ◽  
Author(s):  
R. J. Blint ◽  
W. D. Watson ◽  
R. B. Christensen

Sign in / Sign up

Export Citation Format

Share Document