Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses

2002 ◽  
Vol 29 (3) ◽  
pp. 355 ◽  
Author(s):  
John A. Raven ◽  
Andrew M. Johnston ◽  
Janet E. Kübler ◽  
Rebecca Korb ◽  
Shona G. McInroy ◽  
...  

The literature, and previously unpublished data from the authors’ laboratories, shows that the δ13C of organic matter in marine macroalgae and seagrasses collected from the natural environment ranges from –3 to –35‰. While some marine macroalgae have δ13C values ranging over more than 10‰ within the thallus of an individual (some brown macroalgae), in other cases the range within a species collected over a very wide geographical range is only 5‰ (e.g. the red alga Plocamium cartilagineum which has values between –30 and –35‰). The organisms with very negative δ13C (lower than –30‰) are mainly subtidal red algae, with some intertidal red algae and a few green algae; those with very positive δ13C values (higher than –10‰) are mainly green macroalgae and seagrasses, with some red and brown macroalgae. The δ13C value correlates primarily with taxonomy and secondarily with ecology. None of the organisms with δ13C values lower than –30‰ have pyrenoids. Previous work showed a good correlation between δ13C values lower than –30‰ and the lack of CO2 concentrating mechanisms for several species of marine red algae. The extent to which the low δ13C values are confined to organisms with diffusive CO2 entry is discussed. Diffusive CO2 entry could also occur in organisms with higher δ13C values if diffusive conductance was relatively low. The photosynthesis of organisms with δ13C values more positive than –10‰ (i.e. more positive than the δ13C of CO2 in seawater) must involve HCO3- use.

Encyclopedia ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 177-188
Author(s):  
Leonel Pereira

What are algae? Algae are organisms that perform photosynthesis; that is, they absorb carbon dioxide and release oxygen (therefore they have chlorophyll, a group of green pigments used by photosynthetic organisms that convert sunlight into energy via photosynthesis) and live in water or in humid places. Algae have great variability and are divided into microalgae, small in size and only visible through a microscope, and macroalgae, which are larger in size, up to more than 50 m (the maximum recorded was 65 m), and have a greater diversity in the oceans. Thus, the term “algae” is commonly used to refer to “marine macroalgae or seaweeds”. It is estimated that 1800 different brown macroalgae, 6200 red macroalgae, and 1800 green macroalgae are found in the marine environment. Although the red algae are more diverse, the brown ones are the largest.


Author(s):  
Aisha Ahmed Al-AShwal ◽  
Noora Al-Naimi ◽  
Jassim Al-Khayat ◽  
Bruno Giraldes ◽  
Najat Al-Omari ◽  
...  

Extending into the Arabian Gulf, Qatar is surrounded by a number of islands mostly scattered by the eastern coastline. With the unique physical characteristics of the Gulf, which is a highly saline sea with high seawater temperatures, there is an urge need to investigate the macroalgae living in such harsh environment. Macroalgae plays an important role in the food web as they are primary producers and providers of food for other organisms. They also provide shelter and habitat in the marine ecosystem for herbivorous fish and other invertebrate animals. Additionally, macroalgae plays an outstanding role in reducing CO2 from the atmosphere and increasing the level of dissolved oxygen in their immediate environment. However, there are few studies on marine macroalgae in Qatar and no previous studies found related to macroalgae from the islands around Qatar. The present work contributes to the macroalgae research by providing the first survey of distribution and diversity of benthic marine macroalgae in islands around Qatar. The marine benthic green, red and brown macroalgae of intertidal and subtidal in marine zone areas around Qatar were collected during Qatar’s Islands project, which started 2018. The collected macroalgae are documented and a total of 67 species of macroalgae are recorded for all islands around Qatar, 24 Chlorophyta (Green algae), 25 Rhodophyta (Red algae) and 18 species Phaeophyta (Brown algae). The Red algae are dominant taxon in term of species richness, accounting for an average of 37% of the species at all study sites. The islands which had more species are Al-Beshaireya 58 Species, Al-Aaliya 53 Species, Sheraouh 48 Species, Janan 43 Species and Bu Felaita 37 Species. Our results show that islands located at eastern and southeastern coast of Qatar have more diversity of algae species than those located at the western and northwestern coast.


1971 ◽  
Vol 24 (4) ◽  
pp. 1115 ◽  
Author(s):  
RC Jennings

CCC and Amo.1618, at relatively high concentrations only, inhibited the growth of excised branch apices of the red alga Hypnea musciformis. Neither GA3 nor GA7 stimulated growth of the alga in the presence or absence of these compounds, and gibberellin-like material extracted from H. musciformis also failed to stimulate growth. However, both gibberellins stimulated the growth of slow-growing, but not fast-growing, branch apices of the related red alga Gracilaria verucosa. It is concluded that endogenous gibberellins may not regulate the growth of H. musciformis, but this is likely to be a peculiarity of this species and not a general phenomenon in red algae.


1974 ◽  
Vol 14 (3) ◽  
pp. 633-655
Author(s):  
EVA KONRAD HAWKINS

The fine structure of the Golgi apparatus during development of tetrasporangia of Calli-thamnion roseum is described. Dictyosomes and associated vesicles of 4 developmental stages of sporangia are examined. The wall of sporangia exhibits a heretofore unseen cuticle in red algae. Development of the spore wall and a new plasma membrane around spores occurs through fusion of adjacent Golgi vesicles along the periphery of cells. Observations are discussed in relation to wall formation and expansion of tetrads and in comparison with other work on growth and differentiation of the Golgi apparatus.


2001 ◽  
Vol 84 (5) ◽  
pp. 1313-1331 ◽  
Author(s):  
Donqhui Gao ◽  
Roy Okuda ◽  
Viorica Lopez-Avila

Abstract Supercritical fluid extraction (SFE) of the marine red alga Plocamium cartilagineum, which is known to contain complex mixtures of halogenated monoterpenes, was investigated. P. cartilagineum samples were extracted by SFE with carbon dioxide and modified carbon dioxide containing up to 10% methanol at different pressure and temperature conditions to establish the optimum conditions for extraction. These conditions were then used in the extraction of halogenated monoterpenes from 2 different samples of P. cartilagineum: one from Davenport, CA, and the other from Casa Beach (San Diego, CA). Several halogenated monoterpenes isolated by conventional solvent extraction with methanol and purified by column chromatography were used as the reference compounds for the determination of the extraction efficiency in the SFE experients. Plocamium cartilagineum belongs to the red alga family—Plocamiaceae, and has been found to contain a large number of halogenated monoterpenes, whose structures typically contain 1–6 bromine and/or chlorine atoms. P. cartilagineum grows along the Pacific coast from Washington to Chile, the British Isles, Australia, and Spain. Interestingly, P. cartilagineum collected from different geographical areas in the world are all reported to produce halogenated monoterpenes, but of different structural types and halogen substitution patterns. Most of these halogenated monoterpenes have been found to exhibit varied biological activities, including antifungal, antimicrobial, and molluscicidal activity.


Polar Biology ◽  
1999 ◽  
Vol 22 (6) ◽  
pp. 384-388 ◽  
Author(s):  
Robert MacColl ◽  
Leslie E. Eisele ◽  
Henry Malak ◽  
Richard L. Endres ◽  
Edwin C. Williams ◽  
...  
Keyword(s):  
Red Alga ◽  

Diversity ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 80 ◽  
Author(s):  
Alexandra Chava ◽  
Anna Artemieva ◽  
Eugeniy Yakovis

Facilitation by foundation species commonly structures terrestrial and marine communities. Intraspecific variation in individual properties of these strong facilitators can affect the whole suite of the dependent taxa. Marine macroalgae often act as ecosystem engineers, providing shelter and substrate for numerous associated organisms. Epibiosis of foliose red algae, however, remains underexplored, especially in the high latitudes. Here we studied sessile macrobenthic assemblages associated with a foliose red algae Phycodrys rubens in the White Sea (66° N) shallow subtidal, and the effect of individual plant properties on their structure. The blades of P. rubens develop annually, and it is possible to tell the young (usually larger) plant parts from the old ones. We hypothesized that epibenthic community structure depends on plant part age and size. We examined epibiosis on 110 plants at two sites, and the results generally supported our hypotheses. Old plant parts were several times smaller, and had higher total cover than young parts. Sponges strongly dominated the epibiosis on old parts, and young parts were dominated by polychaetes and bryozoans. Plant part surface area negatively correlated with total cover on young parts, while on old parts the relatioship was location-specific. On young parts the relative abundance of a polychaete Circeis armoricana increased with surface area, and the proportion of sponges decreased. The patterns indicate that epibenthic community structure is linked to the demography of an ecosystem engineer.


Marine Drugs ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 142 ◽  
Author(s):  
James Lever ◽  
Robert Brkljača ◽  
Gerald Kraft ◽  
Sylvia Urban

Marine macroalgae occurring in the south eastern region of Victoria, Australia, consisting of Port Phillip Bay and the heads entering the bay, is the focus of this review. This area is home to approximately 200 different species of macroalgae, representing the three major phyla of the green algae (Chlorophyta), brown algae (Ochrophyta) and the red algae (Rhodophyta), respectively. Over almost 50 years, the species of macroalgae associated and occurring within this area have resulted in the identification of a number of different types of secondary metabolites including terpenoids, sterols/steroids, phenolic acids, phenols, lipids/polyenes, pheromones, xanthophylls and phloroglucinols. Many of these compounds have subsequently displayed a variety of bioactivities. A systematic description of the compound classes and their associated bioactivities from marine macroalgae found within this region is presented.


Author(s):  
Konstantinos Tsiamis ◽  
Akira F. Peters ◽  
Dawn M. Shewring ◽  
Aldo O. Asensi ◽  
Pieter Van West ◽  
...  

This paper provides a comprehensive checklist of the marine benthic macroalgal flora of Ascension Island (tropical South Atlantic Ocean), based on both new collections and previous literature. 82 marine macroalgae were identified from our work, including 18 green algae (Ulvophyceae), 15 brown algae (Phaeophyceae) and 49 red algae (Rhodophyta). Among our collections, 38 species and infraspecific taxa are reported for the first time from Ascension Island, including seven green, three brown and 28 red macroalgae, raising the total number of seaweeds recorded in Ascension so far to 112 taxa in species and infraspecific level. No seagrasses have been recorded at Ascension Island.


1959 ◽  
Vol 43 (2) ◽  
pp. 251-264 ◽  
Author(s):  
Marcia Brody ◽  
Robert Emerson

Quantum yield measurements were made with the red alga Porphyridium cruentum, cultured so as to give different proportions of chlorophyll and phycobilins. Totally absorbing suspensions were used so that there was no uncertainty in the amount of energy absorbed. These measurements have shown that chlorophyll, in this alga, has a photosynthetic efficiency as high as in other algal groups, and higher than the phycobilins—at least at wave lengths shorter than about 650 mµ. Wave lengths longer than this are beyond the range of maximum efficiency of chlorophyll. Under specified conditions of temperature and supplementary light full efficiency may be extended to longer wave lengths. The results of these measurements have made it unnecessary to suppose that in red algae chlorophyll plays a minor role while the phycobilins are the photosynthetic sensitizers of primary importance.


Sign in / Sign up

Export Citation Format

Share Document