Stomatal Responses to Leaf-to-Air Vapour Pressure Deficit in Sahelian Species

1997 ◽  
Vol 24 (3) ◽  
pp. 381 ◽  
Author(s):  
João P. Maroco ◽  
João S. Pereira ◽  
M. Manuela Chaves

Stomatal response to leaf-to-air vapour pressure deficit (LAVPD) was studied in the annual arid zone C4 grasses Schoenefeldia gracilis, Dactyloctenium aegyptium and Eragrostis tremula and in the C3 species, convolvulus, Ipomoea pes-tigridis and Ipomoea vagans. Stomatal responses to LAVPD were consistent with the drought survival strategies adopted by the different species. In drought resistant species (S. gracilis, I. vagansand I. pes-tigridis) stomatal conductance showed a negative response to increasing LAVPD whereas, in drought escaping species (D. aegyptium and E. tremula), stomatal conductance was independent of LAVPD. These observations suggest that resistance to drought was associated with stomatal closure as LAVPD increased, thus reducing the negative effect of a higher evaporative demand on water use efficiency, whereas in drought escaping species stomata showed no response to increasing evaporative demand in the atmosphere.

1985 ◽  
Vol 21 (3) ◽  
pp. 249-258 ◽  
Author(s):  
Luis Fanjul ◽  
R. Arreola-Rodriguez ◽  
M. P. Mendez-Castrejon

SUMMARYThe influence of air temperature (T), vapour pressure deficit (vpd), irradiance (Q) and leaf water potential (ψ) on diurnal stomatal movement of coffee plants was examined under field and controlled environmental conditions. Leaves of plants grown under shade had larger stomatal conductance (g) values than plants grown in open sun. Stomatal responses to vpd under constant temperature conditions were very strong, indicating that ambient humidity could play a major role in controlling stomatal aperture. Changes in g as vpd increased probably contributed to observed reductions in the rate of net photosynthesis (Pn), though the effect of vpd on Pn was smaller.


2019 ◽  
Vol 12 ◽  
pp. 01011
Author(s):  
H.R. Schultz

The predicted developments in climate are region-specific and adaptation can only be successful considering the regional characteristics with its diverse technical, environmental, economic and social implications. One of the key concerns for many regions is the availability of water through precipitation, the distribution of precipitation throughout the year, and possible changes in evaporative demand of the atmosphere and thus water use. From rising temperatures it is mostly assumed that water holding capacity of the atmosphere will increase in the future as a function of the Clausius-Clapeyron law, which predicts an increase in the saturation vapour pressure of the atmosphere of 6–7% per degree Celsius. As a consequence, a simultaneous increase in potential evapotranspiration (ETp, the amount of water that could potentially be evaporated from soils and transpired by plants due to changes in climatic factors such as temperature, vapour pressure deficit, radiation and wind speed) is assumed in many cases, which would alter soil and plant water relations. However, the same underlying principles also predict an increase in precipitation by 1–2% per degree warming. Additionally, model predictions for many regions forecast altered precipitation patterns and thus in combination with the possibility of increased ETp, farmers around the world fear an increase in the likelyhood of water deficit and a reduction in the availability of water for irrigation. Contrary to expectations, there have been reports on a reduction in evaporative demand worldwide despite increasing temperatures. In many cases this has been related to a decrease in solar radiation observed for many areas on earth including wine growing regions in Europe until the beginning of the 80th (global dimming) of the last century. However, since then, solar radiation has increased again, but ETp did not always follow and a worldwide decrease in wind speed and pan evaporation has been observed. In order to evaluate different grape growing regions with respect to observed changes on precipitation patterns and ETp, the data of seven wine-growing areas in five countries in the Northern and Southern hemisphere across a large climatic trans-sect were analyzed (Rheingau, Germany, Burgundy, Rhone Valley, France, Napa Valley, USA, Adelaide Hills, Tasmania, Australia, Marlborough, New Zealand) were analyzed. Precipitation patterns differed vastly between locations and showed very different trends over observation periods ranging from 23 to 60 years. The ETp has increased continuously in only two of the seven wine growing areas (Rheingau and Marlborough). In most other areas, ETp has been stable during winter and summer for at least 22 years (Rhone Valley, Napa Valley, Tasmania), sometimes much longer (45 years Adelaide Hills), and has been declining in Burgundy after a period of strong increase for the last 13 years. The potential underlying factors are discussed in relation to observed shifts in precipitation patterns.


2004 ◽  
Vol 31 (12) ◽  
pp. 1137 ◽  
Author(s):  
Emiliano Pegoraro ◽  
Ana Rey ◽  
Edward G. Bobich ◽  
Greg Barron-Gafford ◽  
Katherine Ann Grieve ◽  
...  

To further our understanding of the influence of global climate change on isoprene production we studied the effect of elevated [CO2] and vapour pressure deficit (VPD) on isoprene emission rates from leaves of Populus deltoides Bartr. during drought stress. Trees, grown inside three large bays with atmospheres containing 430, 800, or 1200 μmol mol–1 CO2 at the Biosphere 2 facility, were subjected to a period of drought during which VPD was manipulated, switching between low VPD (approximately 1 kPa) and high VPD (approximately 3 kPa) for several days. When trees were not water-stressed, elevated [CO2] inhibited isoprene emission and stimulated photosynthesis. Isoprene emission was less responsive to drought than photosynthesis. As water-stress increased, the inhibition of isoprene emission disappeared, probably as a result of stomatal closure and the resulting decreases in intercellular [CO2] (Ci). This assumption was supported by increased isoprene emission under high VPD. Drought and high VPD dramatically increased the proportion of assimilated carbon lost as isoprene. When measured at the same [CO2], leaves from trees grown at ambient [CO2] always had higher isoprene emission rates than the leaves of trees grown at elevated [CO2], demonstrating that CO2 inhibition is a long-term effect.


1991 ◽  
Vol 69 (12) ◽  
pp. 2684-2691 ◽  
Author(s):  
Steven C. Grossnickle ◽  
John H. Russell

Yellow-cedar (Chamaecyparis nootkatensis (D. Don) Spach) gas exchange processes were measured in response to the following primary environmental variables: photosynthetically active radiation, vapour pressure deficit, root temperature, and soil moisture. Under nonlimiting edaphic conditions, maximum stomatal conductance and maximum CO2 assimilation increased rapidly as photosynthetically active radiation increased from 0 to 200 μmol∙m−2∙s−1 and from 0 to 500 μmol∙m−2∙s−1, respectively. Thereafter, greater photosynthetically active radiation levels only resulted in minor increases in stomatal conductance and CO2 assimilation. Maximum stomatal conductance and maximum CO2 assimilation declined in a concave manner as vapour pressure deficit increased from 1 to 5 kPa. Response surface model for stomatal conductance showed vapour pressure deficit was the primary influence after light had caused initial stomatal opening. Response surface modeling approach showed CO2 assimilation increased as photosynthetically active radiation increased, but increased vapour pressure deficit resulted in a suppression of CO2 assimilation. Response surface model showed internal CO2 concentration declined sharply as photosynthetically active radiation increased from 0 to 500 μmol∙m−2∙s−1, but it remained constant with increasing vapour pressure deficit. Decreasing root temperature resulted in a continual decline in CO2 assimilation and stomatal conductance from 22 to 1 °C, while internal CO2 concentration declined from 22 to 13 °C with little change between 13 and 1 °C. As predawn shoot water potential decreased from −0.5 to −2.0 MPa, CO2 assimilation declined in a linear manner, while stomatal conductance and internal CO2 concentration declined in a concave manner. Key words: Chamaecyparis nootkatensis, CO2 assimilation, stomatal conductance, internal CO2 concentration, photosynthetically active radiation, vapour pressure deficit, root temperature, predawn shoot water potential.


2010 ◽  
Vol 37 (2) ◽  
pp. 128 ◽  
Author(s):  
Marisa J. Collins ◽  
Sigfredo Fuentes ◽  
Edward W. R. Barlow

The aim of this study was to investigate how alternative irrigation strategies affected grapevine (Vitis vinifera L.) stomatal response to atmospheric vapour pressure deficit (VPD). In two sites, application of partial rootzone drying (PRD) at 90–100% of crop evapotranspiration (ETc) increased stomatal sensitivity of Shiraz (Syrah) grapevines to high VPD compared with control vines irrigated with the same amount of water but applied on both sides of the vine. PRD significantly reduced vine water use (ESF) measured as sap flow and in dry conditions increased the depth of water uptake from the soil profile. In both experiments, PRD reduced vine water use by up to 50% at moderate VPD (~3 kPa) compared with control vines irrigated at the same level. In the same vines, the response to PRD applied at 100% ETc and deficit irrigation applied at 65% ETc was the same, increasing stomatal sensitivity to VPD and decreasing sap flow. Hydraulic signalling apparently did not play a role in changing stomatal sensitivity as there was no difference in stem water potentials between any of the treatment (PRD and DI) and control vines. This suggests that a long distance root-based chemical signal such as ABA may be responsible for the changes in stomatal behaviour. Shiraz grapevines have previously been classified as anisohydric-like, but application of PRD and DI increased stomatal closure in response to conditions of high evaporative demand making the vines behave in a more isohydric-like manner.


Satisfaction of a leaf’s need for CO 2 requires an intensive gas exchange between mesophyll and atmosphere; prevention of excessive water loss demands that gas exchange be kept low. Stomata open when a low CO 2 concentration in the guard cells triggers ( a ) uptake of K + in exchange of H + , ( b ) production of organic acids, and ( c ) import of Cl - . ‘Hydropassive’ stomatal closure (i.e. turgor loss without reduction of the solute content of the guard cell) appears insufficient to protect the plant from desiccation. An additional ‘hydroactive’ solute loss is necessary; it is brought about by (+)-abscisic acid (ABA) acting as feedback messenger between mesophyll and epidermis. Stomatal closure not only curbs water loss but improves water-use efficiency because transpiration is proportional to stomatal conductance (at constant temperature). In contrast, assimilation, following saturation kinetics with respect to intercellular CO 2 , is relatively insensitive to changes in stomatal conductance (as long as stomata are wide open). In Xanthium strumarium , the amplitude of stomatal responses to ABA depends on the concentration of CO 2 in the guard cells; the opposite statement is also true. These interactions cause stomata to behave like ‘adjustable control systems’ capable of giving priority either to CO 2 assimilation or to water husbandry.


Sign in / Sign up

Export Citation Format

Share Document