A comparison of CO2 and O2 exchange patterns and the relationship with chlorophyll fluorescence during photosynthesis in C3 and CAM plants

1998 ◽  
Vol 25 (1) ◽  
pp. 45 ◽  
Author(s):  
Kate Maxwell ◽  
Murray R. Badger ◽  
C. Barry Osmond

Patterns of CO2 and O2 exchange coupled to chlorophyll fluorescence were examined in the CAM plants Kalanchoe daigremontiana Hamet et Perr. and Hoya carnosa (L.f.) R.Br., and compared with the C3 species Sonchus oleraceus L. Patterns of CO2 assimilation during phase IV of CAM were as predicted for Rubisco-mediated atmospheric CO2 uptake in both CAM plants. The high energetic demand during decarboxylation (phase III) was reflected in a high, CO2-insensitive rate of gross O2 evolution. Uptake of external CO2 was significant during phase III and was not saturated at 1.5% CO2. Gross oxygen uptake in the light was CO2 sensitive in H. carnosa during phases III and IV, which suggests Rubisco oxygenase activity. Oxygen consumption comprised around 33% linear electron transport in K. daigremontiana during phase III (7.5 µmol O2 m-2 s-1 at saturating CO2), but we cannot yet distinguish whether this involves the Mehler reaction or TCA cycle and oxidative phosphorylation during deacidification. CO2 assimilation was saturated at 0.2% CO2 when the epidermis was removed in K. daigremontiana, suggesting a large stomatal and mesophyll resistance to CO2 diffusion. A linear relationship was obtained between the quantum yield of gross O2 evolution and the quantum efficiency of PSII.

2005 ◽  
Vol 32 (5) ◽  
pp. 421 ◽  
Author(s):  
Liezel M. Gouws ◽  
C. Barry Osmond ◽  
Ulrich Schurr ◽  
Achim Walter

Distinct diel rhythms of leaf and cladode expansion growth were obtained in crassulacean acid metabolism (CAM) plants under water-limited conditions, with maxima at mid-day during phase III of CO2 assimilation. This pattern coincided with the availability of CO2 for photosynthesis and growth during the decarboxylation of malic acid, with maximum cell turgor due to the nocturnally accumulated malic acid, and with the period of low cytoplasmic pH associated with malic acid movement from vacuole to cytosol. Maximum growth rates were generally only 20% of those in C3 plants and were reached at a different time of the day compared with C3 plants. The results suggest that malic acid, as a source of carbohydrates, and a determinant of turgor and cytoplasmic pH, plays a major role in the control of diel growth dynamics in CAM plants under desert conditions. The observed plasticity in phasing of growth rhythms under situations of differing water availability suggests that a complex network of factors controls the diel growth patterns in CAM plants and needs to be investigated further.


1997 ◽  
Vol 24 (6) ◽  
pp. 777 ◽  
Author(s):  
Kate Maxwell ◽  
Susanne von Caemmerer ◽  
John R. Evans

Leaf internal conductance to CO2 (gi) from substomatal cavity to the carboxylation sites of Rubisco was measured in the leaf succulent CAM species, Kalanchoe daigremontiana Hamet et Perr. Measurements were made during Rubisco-mediated atmospheric C3 carboxylation in phase IV photosynthesis. Using simultaneous gas exchange and chlorophyll fluorescence techniques, internal conductance was calculated to be 0.05 mol m-2 s-1 bar-1 , when measured at both saturating and limiting light. This is one of the lowest recorded values for gi as compared to a range of C3 species with comparable Rubisco content and indicates a large diffusion limitation to atmospheric CO2 fixation through the C3 pathway in K. daigremontiana. In ambient air, CO2 partial pressure at the carboxylation sites of Rubisco was 109 µbar. Internal diffusion is limited by a thick leaf consisting of densely packed, succulent mesophyll with a small portion of airspace. We speculate that a low internal conductance to CO2 diffusion results from the compromise between a succulent mesophyll required for C4 acid storage and access for CO2 diffusion to both PEPC in the cytoplasm and Rubisco in the chloroplasts. Restricted diffusion of CO2 within the leaf makes CO2 assimilation less efficient during the transient phases of crassulacean acid metabolism.


2011 ◽  
Vol 12 (2) ◽  
pp. 126-134 ◽  
Author(s):  
Yan-hong Zhou ◽  
Yi-li Zhang ◽  
Xue-min Wang ◽  
Jin-xia Cui ◽  
Xiao-jian Xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document