Use of Callus Cultures to Detect NaCl Tolerance in Cultivars of Three Species of Pasture Legumes

1981 ◽  
Vol 8 (5) ◽  
pp. 437 ◽  
Author(s):  
MK Smith ◽  
JA Mccomb

The effect was examined of NaCl on the growth of callus from Medicago sativa L. cvv. Hunter River, Cuf 101, and Hasawi and line W75RS, and Trifolium repens L. cv. Ladino, all of which are regarded as salt-sensitive pasture legumes, and T. fragiferum L. cv. Palestine which is considered a moderately salt-tolerant pasture legume. Only M. sativa line W75RS showed some tolerance to NaCI, as callus growth was comparable at 0.1 and 62.5 mM NaCI. Whole plants in nutrient solution culture were grown from the same seed stocks and exposed to the same levels of NaCl as the callus. The responses were very similar to those shown by the callus cultures, with line W75RS showing some tolerance at 62.5 mM NaCI, which indicates the validity of using callus cultures to screen for tolerance to NaCl. However, on a yield basis, W75RS grew less than the other cultivars of M. sativa.

1981 ◽  
Vol 8 (3) ◽  
pp. 267 ◽  
Author(s):  
MK Smith ◽  
JA Mccomb

The effect of NaCl on growth was examined for whole plants and callus cultures of a salt-sensitive glycophyte (Phaseolus vulgaris L.), a salt-tolerant glycophyte (Beta vulgaris L.) and two halophytes (Atriplex undulata D. Dietr., which has salt glands, and Suaeda australis (R. Br.) Moq., a succulent). Whole plants were grown in nutrient solution culture at NaCl concentrations of 0.1-250 mM. Callus cultures were initiated from the same seed stock, and similar saline regimes were imposed. Whole plant responses were characteristic for the various types of plants: P. vulgaris showed a decrease in growth with increasing salinity; B. vulgaris showed a slight increase in growth at the intermediate salt level and a decrease at higher levels; A. undulata and S. australis showed well defined growth optima at 62.5 mM and 125 mM NaCl, respectively. Callus cultures of P. vulgaris and the two halophytes grew very poorly when salinity was increased. Callus of B. vulgaris showed the same tolerance to salt as did the whole plants. Thus salt tolerance of the halophytes depends on the anatomical and physiological complexity of the intact plant while callus from B. vulgaris appears to have a mechanism(s) of salt tolerance which operates at the cellular level.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 588c-588
Author(s):  
Daniel C. Bowman

An experiment was conducted in nutrient solution culture to examine the effects of salinity on N uptake by tall fescue (Festuca arundinacea Schreb.) turfgrass. The cultivars `Finelawn' and `Monarch' were chosen for study, representing a salt-sensitive and salt-tolerant tall fescue. Nitrogen treatments were imposed to produce N-replete turf (no N stress) and moderately N-deficient turf. Rootzone salinity was increased gradually over four weeks to final salt concentrations of 0, 40, 80 and 120 mM using a combination of NaCl and CaCl2 at a molar ratio of 8:1. Uptake of both NO3-N and NH4-N, each labeled with 99.8% enriched 15N to determine N partitioning, was measured over a 24 hr period as depletion from solution. Nitrate and ammonium uptake by N-replete tall fescue turf were similarly affected by salinity in both cultivars, with moderate inhibition (10-25%) at 40 and 80 mM and severe inhibition (60-70%) at 120 mM salt. Uptake by the N-deficient turf was much faster than by the N-replete turf, with the controls absorbing all the added N by 8-12 hours. Inhibition of uptake by `Monarch' tall fescue was roughly 30% at both 40 and 120 mM salt, whereas 80 mM salt had essentially no effect. Nitrogen uptake by `Finelawn' was progressively inhibited by higher salt concentrations. It is possible that these differences are related to the relative salt tolerances of the two cultivars, but the mechanism is presently unknown.


1990 ◽  
Vol 45 (6) ◽  
pp. 602-606 ◽  
Author(s):  
B. Merkel ◽  
J. Reichling

Abstract Unorganized callus and leaf/root-differentiating callus cultures of Pimpinella major have been established in liquid nutrient medium. Their capacity to accumulate rare phenylpropanoids such as epoxy-pseudoisoeugenol tiglate, epoxy-anol tiglate and anol tiglate was compared with that of seedlings and whole plants. The unorganized callus cultures were not able to accumulate any phenylpropanoids. In comparison, the leaf/root-differentiating callus culture promoted the accumulation of epoxy-pseudoisoeugenol tiglate (up to 90 mg/100 g fr.wt.) but not that of anol-derivatives. The accumulated amount of EPT in PMD-SH was comparable with that in plant seedlings.


Weed Science ◽  
1979 ◽  
Vol 27 (3) ◽  
pp. 278-279 ◽  
Author(s):  
W. S. Hardcastle

Twenty-eight commercial soybean [Glycine max(L.) Merr.] cultivars of maturity classes V through VIII were evaluated for differences in response to metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5(4H)-one] 0.125 ppm w/w in hydroponic culture. Top dry weight (TDW) of treated ‘FFR 666’ soybeans equaled that of the cultivar check and five other cultivars were not significantly different (P = 5%). ‘Semmes' was most sensitive to the herbicide with TDW 40% of cultivar check. ‘Tracy’ and ‘Coker 156’ were not significantly different (P = 5%) from Semmes. The other cultivars tested were intermediate in response to metribuzin.


1970 ◽  
Vol 62 (3) ◽  
pp. 351-352 ◽  
Author(s):  
N. Jerry Chatterton ◽  
C. M. McKell ◽  
F. T. Bingham ◽  
W. J. Clawson

2017 ◽  
Vol 57 (3) ◽  
pp. 539 ◽  
Author(s):  
P. Beck ◽  
T. Hess ◽  
D. Hubbell ◽  
M. S. Gadberry ◽  
J. Jennings ◽  
...  

The objective of this study was to evaluate the effects of including alfalfa (ALF, Medicago sativa L.) or a combination of white (Trifolium repens L.) and red (Trifolium pretense L.) clovers (CLVR) inter-seeded into bermudagrass (Cynodon dactylon L. Pers.) on herbage nutritive value compared with monocultures of bermudagrass fertilised with 0 (0N), 56 (56N), or 112 (112N) kg nitrogen (N)/ha over four grazing seasons. In autumn, at the end of the fourth year and in the spring before the fifth grazing season, alfalfa and clover plants were killed and the carryover N benefit of CLVR or ALF was compared with N fertilisation rates during the fifth year. Across years, N fertilisation rate increased herbage mass and carrying capacity linearly; whereas herbage production from CLVR and ALF swards was equivalent to 56N, were greater than 0N and less than 112N. Herbage mass in CLVR and ALF swards was greater than fertilised bermudagrass swards in the spring and did not differ from fertilised bermudagrass in the early summer. In late summer herbage accumulation of CLVR and ALF swards appeared to decrease, limiting the herbage mass in the legume pastures compared with 56N and 112N. Carrying capacity of CLVR and ALF swards was greater than fertilised bermudagrass in the spring and early summer, but did not differ from fertilised swards in the late summer. The N benefit of including legumes in bermudagrass swards can alleviate the reliance on synthetic N fertilisation with little overall effect on pasture carrying capacity.


2013 ◽  
Vol 11 (1) ◽  
pp. 95-102 ◽  
Author(s):  
MH Rahman ◽  
MM Alam Patwary ◽  
H Barua ◽  
M Hossain ◽  
MM Hasan

Fifteen salt tolerant CIP (International Potato Centre) Potato genotypes along with BARI (Bangladesh Agricultural Research Institute) Alu 7 (Diamant) and one local variety viz., Dohazari Sada were evaluated at Bashkhali, Chittagong during 2011-12 to screen the suitable genotypes for cultivation in saline areas of Bangladesh. Diamant and Dohazari Sada and all of the CIP genotypes were found to grow well up to 60 DAP (Days After Planting) at saline areas having healthy plants and no senescence was noticed but after that 61-100% plants died due to high level of soil salinity (6.41dS/m) depending on genotypes. Genotype CIP 112 gave the highest yield (21.07 t/ha) and CIP 102 was comparatively less affected by soil salinity than the other genotypes. However, all the salt tolerant CIP genotypes were found to be promising in the saline soil. DOI: http://dx.doi.org/10.3329/agric.v11i1.15249 The Agriculturists 2013; 11(1) 95-102


2013 ◽  
Vol 64 (4) ◽  
pp. 409 ◽  
Author(s):  
Bidhyut Kumar Banik ◽  
Zoey Durmic ◽  
William Erskine ◽  
Phillip Nichols ◽  
Kioumars Ghamkhar ◽  
...  

Biserrula (Biserrula pelecinus L.) is an important annual pasture legume for the wheatbelt of southern Australia and has been found to have lower levels of methane output than other pasture legumes when fermented by rumen microbes. Thirty accessions of the biserrula core germplasm collection were grown in the glasshouse to examine intra-specific variability in in vitro rumen fermentation, including methane output. One biserrula cultivar (Casbah) was also grown at two field locations to confirm that low methanogenic potential was present in field-grown samples. All of the biserrula accessions had significantly reduced methane [range 0.5–8.4 mL/g dry matter (DM)] output compared with subterranean clover (28.4 mL/g DM) and red clover (36.1 mL/g DM). There was also significant variation in fermentability profiles (except for volatile fatty acids) among accessions of the core collection. Methanogenic potential exhibited 86% broad-sense heritability within the biserrula core collection. The anti-methanogenic and gas-suppressing effect of biserrula was also confirmed in samples grown in the field. In conclusion, biserrula showed variability in in vitro fermentation traits including reduced methane production compared with controls. This bioactivity of biserrula also persists in the field, indicating scope for further selection of biserrula as an elite methane-mitigating pasture.


Sign in / Sign up

Export Citation Format

Share Document