Development of national animal genetic resource programs

2004 ◽  
Vol 16 (2) ◽  
pp. 27 ◽  
Author(s):  
H. D. Blackburn

Globally, animal genetic resources are contracting due to economic forces. As a result, during the 1990s there was a dramatic increase in national animal genetic resource activities. Many national programmes were initiated and the Food and Agriculture Organisation of the United Nations played a prominent role in coalescing national actions. Nationally, programmes have been initiated that comprise of in situ, ex situ and information-exchange efforts. A critical element to national conservation efforts is the development of cryopreserved collections of germplasm. Several countries have initiated substantial multispecies collections of cryopreserved germplasm. The selection of animals within breeds of interest is an important consideration in building cryopreserved collections. Animal selection should be based on a lack of genetic relationship, with sufficient numbers of animals to ensure the capture of rare alleles. Major issues facing repository development and genetic conservation are: (1) that all breeds are in need of genetic diversity management; (2) a better understanding of in situ breed population dynamics is needed; and (3) the concept that repository collections can be used by a broad range of clientele across time as well as during emergency situations.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Annae M. Senkoro ◽  
Pedro Talhinhas ◽  
Fernanda Simões ◽  
Paula Batista-Santos ◽  
Charlie M. Shackleton ◽  
...  

AbstractThe pepper-bark tree (Warburgia salutaris) is one of the most highly valued medicinal plant species worldwide. Native to southern Africa, this species has been extensively harvested for the bark, which is widely used in traditional health practices. Illegal harvesting coupled with habitat degradation has contributed to fragmentation of populations and a severe decline in its distribution. Even though the species is included in the IUCN Red List as Endangered, genetic data that would help conservation efforts and future re-introductions are absent. We therefore developed new molecular markers to understand patterns of genetic diversity, structure, and gene flow of W. salutaris in one of its most important areas of occurrence (Mozambique). In this study, we have shown that, despite fragmentation and overexploitation, this species maintains a relatively high level of genetic diversity supporting the existence of random mating. Two genetic groups were found corresponding to the northern and southern locations. Our study suggests that, if local extinctions occurred in Mozambique, the pepper-bark tree persisted in sufficient numbers to retain a large proportion of genetic diversity. Management plans should concentrate on maintaining this high level of genetic variability through both in and ex-situ conservation actions.


2019 ◽  
Vol 4 (1) ◽  
pp. 47
Author(s):  
Zeleke Tesema ◽  
Abiy Shenkute

Conservation of native animal genetic resource is vital to maintain genetic diversity sustainably and to cope with the future challenging climate change. Thus, the aim of this paper was to review the experience of sheep conservation practice in Turkey and future prospects in Ethiopia. In turkey, fifteen sheep types are extinct and other native sheep population decreased by 47% due to an unplanned crossbreeding program. For these reasons, sheep genetic resource ex-situ in vivo conservation project started in 1995 with three sheep breeds. The animal breeding law regarding registration of new breed and conservation of animal genetic resources was enacted in 2001 in Turkey. In-situ conservation subsidies of sheep breeds near to extinction have been continued since 2005. Following these events, in vitro conservation of germplasm of 13 sheep breeds have been initiated in 2007 and two gene banks have been established and thereby sperm, embryo, cell, and DNA of from each sheep breed conserved in the gene bank. Although they were successful in both in-situ and ex-situ conservations with some limitations, in-situ conserved sheep breeds had better productivity than ex-situ in vivo conserved sheep in Turkey. In the case of Ethiopia, in-situ conservation will be compatible with the existing infrastructure. Through balancing the genetic gain and inbreeding level, it is possible to integrate the existing community-based genetic improvement programs (with in breed selection) with sustainable in-situ conservation of native sheep genetic resources in Ethiopia.


Author(s):  
Eija Pouta ◽  
Annika Tienhaara ◽  
Heini Ahtiainen

The intensification of agriculture has led to remarkable changes in the utilization of agricultural genetic resources and many previously common breeds and varieties have become rare or even endangered (FAO 2007, 2010, Drucker, Gomez & Anderson 2001). In Finland, Eastern and Northern Finncattle, the Kainuu Grey Sheep and the Åland Sheep are endangered according to the FAO classification (FAO 2003) and, for example, majority of the old Finnish crop varieties and Finnish landrace pig are already extinct. Making informed decisions on the appropriate focus and extent of conservation of agricultural genetic resources requires information on both the costs and benefits of conservation. Economic analyses involving the valuation of conservation benefits can guide resource allocation of various types of genetic resources and conservation methods (Artuso 1998). The value of genetic resources is not typically revealed by markets, as they are not directly traded in the markets or the prices of agricultural products do not completely indicate their value (Oldfield 1989, Brown 1990, Drucker et al. 2001). Although the importance of economic analyses has been recognized, the literature on the monetary value of genetic resources in agriculture is relatively limited (see e.g. Evenson et al. 1998 and Rege and Gibson 2003, Ahtiainen & Pouta 2011). Currently the conservation policy of farm agricultural genetic resources in Finland is based on international agreements such as the Convention on Biological Diversity (1992) and the Global Plan of Action for Animal Genetic resources (FAO 2007). National genetic resource programs were initiated for plants in 2003 and for farm animals in 2005 to strengthen the conservation of genetic resources in Finland. Although there has been some progress in the implementation of the programs, they have also suffered from shortage of funds and lack of political interest in conservation. To re-evaluate the conservation policy, there is a need to use valuation methods capable of estimating also the non-use value components of genetic resources, i.e. stated preference methods. The choice experiment (CE) method has been found suitable to valuing genetic resources due to its flexibility and ability to value the traits of breeds or varieties and their attributes. Choice experiment makes it possible to value benefits of both plant genetic resources (PGR) and animal genetic resources (AnGR). The terms refer to all cultivated plant species and varieties, as well as all animal species and breeds that are of interest in terms of food and agricultural production. The CE method can also be used to evaluate the means of conservation in situ (live animals and plants) and ex situ (as seeds, cryopreserved embryos and other genetic material). Previous choice experiments have focused on valuing breeds or varieties and their attributes, especially on attributes that are related to the use of the breed or variety in agriculture (Birol et al. 2006, Ouma et al. 2007). In this study we present the results of a choice experiment valuing the benefits of a genetic resource conservation program in Finland. We test the effect of in situ and ex situ conservation on citizen choices between programs. We also analyse whether the plant varieties and animal breeds are perceived equally valuable by citizen. As the conservation of agricultural genetic resources (AgGR) cannot be expected to be equally valuable to all citizens, we analyse the existence of citizen segments that value differently the conservation of genetic resources. We can assume that AgGR is a rather unknown good for some of the respondents of the valuation survey. However, in valuation surveys respondents are assumed to make “informed” choices when responding to value elicitation questions (e.g. Blomquist &Whitehead 1998). Therefore, we offered an opportunity for respondents to obtain further information on AgGR. In our case, the internet-based survey allowed us also to measure how much time respondents took in reading the information and responding to questions. Furthermore, we also measured response certainty and tested the effects of uncertainty and information as reasons for heterogeneity.


2001 ◽  
Vol 29 ◽  
pp. 1-6
Author(s):  
P.N. Bhat

Biological diversity is the vital organic resource on which the present and future sustenance of humankind depends. The farm animal genetic resource (AnGR) sector of this diversity provides the variety and variability of species, breeds and populations including unique genotypes which underpin an essential component of food and agriculture production. Judicious use and enhancement of these living resources must be ensured, also with their conservation, so that we may meet the increasing demands for food.


2010 ◽  
Vol 11 (1) ◽  
pp. 85 ◽  
Author(s):  
Rubén Alfredo Valencia ◽  
R, Mario Lobo A. ◽  
Gustavo Adolfo Ligarreto M.

<p>Colombia es reconocida en el mundo por su megadiversidad en fauna, flora y microorganismos, atribuida a su gran complejidad ecosistémica y a procesos evolutivos de los Andes, la Orinoquia, Amazonia y de sus costas Pacífica y Caribe, en los que se encuentran páramos, selvas tropicales, humedales, llanuras y desiertos, entre otros. Con una superficie continental de alrededor del 0,77% del área terrestre del mundo, alberga aproximadamente el 10% de las especies vegetales y animales conocidas. Estos recursos genéticos tienen un valor estratégico importante para el país, y sus inventarios son una herramienta fundamental para el análisis del estado actual y potencial de ellos y para la toma de decisiones sobre medidas de conservación y renovación. En este ámbito, el Gobierno colombiano facilitó la conformación del Sistema de Bancos de Germoplasma de la Nación para la Alimentación y la Agricultura, el cual figura en cabeza del ICA y es manejado por Corpoica por medio de un convenio de Cooperación Técnica y Científica, suscrito con el ICA. Del total de accesiones vegetales que posee Colombia, mantenidas en condiciones ex situ, el 70% se maneja en Corpoica. El 30% restante corresponde a bancos activos. En general, en Colombia existen bancos de germoplasma donde se conservan las especies en la modalidad ex situ, lo que complementa procesos de mantenimiento in situ, que incluyen materiales en fincas de los productores.</p><p><strong><br /></strong></p><p><strong>State of Research of Plant Genetic Resources in Colombia: Germplasm Banks System</strong></p><p>Colombia is recognized worldwide for its megadiversity, which includes fauna, flora and microorganisms. The above is attributed to its highly ecosystemic complexity, derived from evolutionary processes in the Andes, the Orinoco, the Amazon and its Pacific and Caribbean coasts; regions where are located highlands, tropical jungles, wetlands, plains and deserts, among others. With about 0.77%, of the world’s land area, the country holds approximately 10% of the plant and animal species known around the world. These genetic resources hold an important strategic value for the country, and their inventories are a fundamental tool for the analysis of their current option and use values, as well as, for taking actions related to their conservation, renewal and utilization. In this context, the Colombian government promoted the establishment of a National Germplasm Bank System for Food and Agriculture, which comprises vegetal, animal and microorganism species, The System is administrated by ICA and managed by Corpoica, through a Technical and Scientific Cooperation Agreement subscribed by the last two entities. From all the plant species accessions, held under ex situ conditions at Colombia, 70% of those are included in the above System. The remaining 30% correspond, mainly to species, held under the criteria of active banks. From the above and, in relation to plant genetic resources, Colombia has an ex situ National Germplasm Bank System, for Food and Agriculture, which complements in situ conservation processes done in farm by local producers.</p>


1994 ◽  
Vol 70 (4) ◽  
pp. 427-434 ◽  
Author(s):  
G. P. Buchert

The processes which generate and maintain genetic variability in natural forest tree populations are reviewed in relation to genetic management of naturally regenerating white pine (Pinus strobus L.) stands. Genetic consequences of inbreeding and silvicultural selection on natural regeneration are discussed, with special reference to old-growth stand management.Ontario's old-growth white pine forests provide a unique opportunity to manage, utilize and conserve pristine gene pools in situ. However, fragmentation of white pine populations in other areas may require ex situ methods to preserve remnants of local genetic variation for future use. Key words: white pine, genetic diversity, inbreeding, mating systems, high-grading, old-growth, genetic resource management, gene conservation


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
K. Barmak

Generally, processing of thin films involves several annealing steps in addition to the deposition step. During the annealing steps, diffusion, transformations and reactions take place. In this paper, examples of the use of TEM and AEM for ex situ and in situ studies of reactions and phase transformations in thin films will be presented.The ex situ studies were carried out on Nb/Al multilayer thin films annealed to different stages of reaction. Figure 1 shows a multilayer with dNb = 383 and dAl = 117 nm annealed at 750°C for 4 hours. As can be seen in the micrograph, there are four phases, Nb/Nb3-xAl/Nb2-xAl/NbAl3, present in the film at this stage of the reaction. The composition of each of the four regions marked 1-4 was obtained by EDX analysis. The absolute concentration in each region could not be determined due to the lack of thickness and geometry parameters that were required to make the necessary absorption and fluorescence corrections.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


2017 ◽  
Author(s):  
Younghee Lee ◽  
Daniela M. Piper ◽  
Andrew S. Cavanagh ◽  
Matthias J. Young ◽  
Se-Hee Lee ◽  
...  

<div>Atomic layer deposition (ALD) of LiF and lithium ion conducting (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloys was developed using trimethylaluminum, lithium hexamethyldisilazide (LiHMDS) and hydrogen fluoride derived from HF-pyridine solution. ALD of LiF was studied using in situ quartz crystal microbalance (QCM) and in situ quadrupole mass spectrometer (QMS) at reaction temperatures between 125°C and 250°C. A mass gain per cycle of 12 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C and decreased at higher temperatures. QMS detected FSi(CH<sub>3</sub>)<sub>3</sub> as a reaction byproduct instead of HMDS at 150°C. LiF ALD showed self-limiting behavior. Ex situ measurements using X-ray reflectivity (XRR) and spectroscopic ellipsometry (SE) showed a growth rate of 0.5-0.6 Å/cycle, in good agreement with the in situ QCM measurements.</div><div>ALD of lithium ion conducting (AlF3)(LiF)x alloys was also demonstrated using in situ QCM and in situ QMS at reaction temperatures at 150°C A mass gain per sequence of 22 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C. Ex situ measurements using XRR and SE showed a linear growth rate of 0.9 Å/sequence, in good agreement with the in situ QCM measurements. Stoichiometry between AlF<sub>3</sub> and LiF by QCM experiment was calculated to 1:2.8. XPS showed LiF film consist of lithium and fluorine. XPS also showed (AlF<sub>3</sub>)(LiF)x alloy consists of aluminum, lithium and fluorine. Carbon, oxygen, and nitrogen impurities were both below the detection limit of XPS. Grazing incidence X-ray diffraction (GIXRD) observed that LiF and (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film have crystalline structures. Inductively coupled plasma mass spectrometry (ICP-MS) and ionic chromatography revealed atomic ratio of Li:F=1:1.1 and Al:Li:F=1:2.7: 5.4 for (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film. These atomic ratios were consistent with the calculation from QCM experiments. Finally, lithium ion conductivity (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film was measured as σ = 7.5 × 10<sup>-6</sup> S/cm.</div>


Sign in / Sign up

Export Citation Format

Share Document