Aromatase and 11β-hydroxysteroid dehydrogenase 2 localisation in the testes of pigs from birth to puberty linked to changes of hormone pattern and testicular morphology

2008 ◽  
Vol 20 (4) ◽  
pp. 505 ◽  
Author(s):  
A. Wagner ◽  
R. Claus

Oestrogens and glucocorticoids are important for spermatogenesis and are regulated via aromatase for oestradiol synthesis and 11β-hydroxysteroid dehydrogenase 2 (11β-HSD 2) as an inactivator of cortisol. In the present study postnatal changes of these two enzymes were monitored together with testicular development and hormone concentrations. Pigs were assigned to three periods: Weeks 0–5, Weeks 5–11 or Weeks 11–17. In Period 1, groups of four piglets were killed after each week. Blood plasma and testes were sampled immediately post mortem. For Periods 2 and 3, groups of six pigs were fitted with vein catheters for daily blood collection. Testes from all pigs were obtained after killing. Levels of testosterone, oestradiol, LH, FSH and cortisol were determined radioimmunologically. The 11β-HSD 2- and aromatase-expressing cells were stained immunocytochemically. All hormones were maximal 2 weeks after birth. A rise of LH, testosterone and oestradiol occurred again at Week 17. FSH and cortisol remained basal. Parallel to the first postnatal rise, the presence of aromatase and 11β-HSD 2 in Leydig cells increased, together with germ and Sertoli cell numbers. Expression was low from 3 to 5 weeks, was resumed after Week 5 and was maximal at Week 17. The amount of 11β-HSD 2 in germ cells was greatest at birth, decreased thereafter and was absent after Week 3.

2008 ◽  
Vol 27 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Suel-Kee Kim ◽  
Jong-Hoon Kim ◽  
Jung Ho Han ◽  
Yong-Dal Yoon

Tributyltin (TBT) is known to disrupt the development of reproductive organs, thereby reducing fertility. The aim of this study was to evaluate the acute toxicity of TBT on the testicular development and steroid hormone production. Immature (3-week-old) male mice were given a single administration of 25, 50, or 100 mg/kg of TBT by oral gavage. Lumen formation in seminiferous tubule was remarkably delayed, and the number of apoptotic germ cells found inside the tubules was increased in the TBT-exposed animals, whereas no apoptotic signal was observed in interstitial Leydig cells. Reduced serum testosterone concentration and down-regulated expressions of the mRNAs for cholesterol side-chain cleavage enzyme (P450scc), 17α-hydroxylase/C17–20 lyase (P45017α), 3β-hydroxysteroid-dehydrogenase (3β-HSD), and 17β-hydroxysteroid-dehydrogenase (17β-HSD) were also observed after TBT exposure. Altogether, these findings demonstrate that exposure to TBT is associated with induced apoptosis of testicular germ cells and inhibition of steroidogenesis by reduction in the expression of steroidogenic enzymes in interstitial Leydig cells. These adverse effects of TBT would cause serious defects in testicular development and function.


2017 ◽  
Vol 38 (4Supl1) ◽  
pp. 2551
Author(s):  
Juliana Stephany de Souza ◽  
Maria Carolina Villani Miguel ◽  
Marcos Antônio Maioli ◽  
Arthur Nelson Trali Neto ◽  
David Giraldo Arana ◽  
...  

The study of gonadal development improves the understanding of factors that can influence the reproductive development process. This study aims to characterize bovine fetal testicular development and the testosterone level in the Nellore breed. For the study, 162 bovine fetuses aged between 3 and 8 months were collected from Nellore cows at a local abattoir. The fetal age was estimated by DP=8.4+0.087L+5.46?L, where DP is the estimated pregnancy day and L represents fetal length. The fetal gonadal weight (g), width (cm), and thickness (cm) were measured. Thereafter, the gonads were submitted to classic histology processes in 3-µm-thick slices cut at 210 µm intervals. The Sertoli cells, Leydig cells, and germ cells were counted. Blood samples were collected from umbilical cords for testosterone levels. The data were analyzed using the Spearman correlation test followed by Principal Component Analysis and one-way ANOVA to compare the averages between months. The testicular weight and volume were found to have a positive correlation with the numbers of Sertoli cells (r = 0.84; p < 0.0001 and r = 0.92; p < 0.0001, respectively), Leydig cells (r = 0.80; p < 0.0001 and r = 0.90; p < 0.0001, respectively), and germ cells (r = 0.84; p < 0.0001 and r = 0.93; p < 0.0001, respectively) and to be negatively correlated with testosterone plasmatic concentration (r = -0.31; p = 0.0001 and r = -0.22; p = 0.006, respectively) during pregnancy. After the fifth month, the numbers of Sertoli cells, Leydig cells and germ cells differed (p < 0.0001) from the following gestational months. The highest testosterone concentration (p = 0.007) was observed in the fifth month of gestation and was followed by a concentration decrease in the seventh and eighth months. The increase in cell quantity was responsible for the increase in testicular weight and volume during fetal development. On the other hand, the testosterone concentration followed the increase in testicular weight and volume until the 7th month of gestation and regressed during the 8th and 9th months, in addition to the increase in cell number.


2013 ◽  
Vol 11 (3) ◽  
pp. 587-596 ◽  
Author(s):  
Diógenes Henrique de Siqueira-Silva ◽  
Carlos Alberto Vicentini ◽  
Alexandre Ninhaus-Silveira ◽  
Rosicleire Veríssimo-Silveira

The present study describes the testicular maturation phases (associating the germ cells development and the morphological changes suffered by the germinal epithelium along the whole year), and the testicular morphology in the yellow peacock bass Cichla kelberi, relating it to other species. For this purpose, 78 specimens were studied according conventional techniques of light microscope. The testes in C. kelberi were classified as unrestricted spermatogonial lobular, an apomorphic characteristic in the recent groups of Teleost. Furthermore, were defined five testicular maturation phases: Preparatory phase; Early Germinal Epithelium Development; Mid Germinal Epithelium Development; Late Germinal Epithelium Development and; Regression. Similar classifications were described to other species indicating that the testicular classifications based on this propose, can be applied to lots of fishes. However, besides it similarity, the testicular reproductive cycle of C. kelberifollows a different pattern in the Regression phase, on which the gonadal restructuration and the spermatogonial proliferation gathers at the same time. So, the testes in C. kelberi never return to the Preparatory phase to start a new reproductive cycle, being this one present only at the first reproductive cycle in this species. This fact also explains the absence of individuals totally spent after their first reproductive cycle.


2003 ◽  
Vol 17 (9) ◽  
pp. 1868-1879 ◽  
Author(s):  
Wei Yan ◽  
Jun-Xing Huang ◽  
Anna-Stina Lax ◽  
Lauri Pelliniemi ◽  
Eeva Salminen ◽  
...  

Abstract To explore physiological roles of BCL-W, a prosurvival member of the BCL-2 protein family, we generated transgenic (TG) mice overexpressing Bcl-w driven by a chicken β-actin promoter. Male Bcl-w TG mice developed normally but were infertile. The adult TG testes displayed disrupted spermatogenesis with various severities ranging from thin seminiferous epithelium containing less germ cells to Sertoli cell-only appearance. No overpopulation of any type of germ cells was observed during testicular development. In contrast, the developing TG testes displayed decreased number of spermatogonia, degeneration, and detachment of spermatocytes and Sertoli cell vacuolization. The proliferative activity of germ cells was significantly reduced during testicular development and spermatogenesis, as determined by in vivo and in vitro 5′-bromo-2′deoxyuridine incorporation assays. Sertoli cells were structurally and functionally normal. The degenerating germ cells were TUNEL-negative and no typical apoptotic DNA ladder was detected. Our data suggest that regulated spatial and temporal expression of BCL-W is required for normal testicular development and spermatogenesis, and overexpression of BCL-W inhibits germ cell cycle entry and/or cell cycle progression leading to disrupted spermatogenesis.


Reproduction ◽  
2010 ◽  
Vol 139 (1) ◽  
pp. 177-184 ◽  
Author(s):  
P J O'Shaughnessy ◽  
A Monteiro ◽  
G Verhoeven ◽  
K De Gendt ◽  
M H Abel

FSH and androgen act to stimulate and maintain spermatogenesis. FSH acts directly on the Sertoli cells to stimulate germ cell number and acts indirectly to increase androgen production by the Leydig cells. In order to differentiate between the direct effects of FSH on spermatogenesis and those mediated indirectly through androgen action, we have crossed hypogonadal (hpg) mice, which lack gonadotrophins, with mice lacking androgen receptors (AR) either ubiquitously (ARKO) or specifically on the Sertoli cells (SCARKO). These hpg.ARKO and hpg.SCARKO mice were treated with recombinant FSH for 7 days and testicular morphology and cell numbers were assessed. In untreated hpg and hpg.SCARKO mice, germ cell development was limited and did not progress beyond the pachytene stage. In hpg.ARKO mice, testes were smaller with fewer Sertoli cells and germ cells compared to hpg mice. Treatment with FSH had no effect on Sertoli cell number but significantly increased germ cell numbers in all groups. In hpg mice, FSH increased the numbers of spermatogonia and spermatocytes, and induced round spermatid formation. In hpg.SCARKO and hpg.ARKO mice, in contrast, only spermatogonial and spermatocyte numbers were increased with no formation of spermatids. Leydig cell numbers were increased by FSH in hpg and hpg.SCARKO mice but not in hpg.ARKO mice. Results show that in rodents 1) FSH acts to stimulate spermatogenesis through an increase in spermatogonial number and subsequent entry of these cells into meiosis, 2) FSH has no direct effect on the completion of meiosis and 3) FSH effects on Leydig cell number are mediated through interstitial ARs.


2016 ◽  
Vol 311 (2) ◽  
pp. E396-E404 ◽  
Author(s):  
Rasmani Hazra ◽  
Dannielle Upton ◽  
Reena Desai ◽  
Omar Noori ◽  
Mark Jimenez ◽  
...  

Recently, we created a unique gain-of-function mouse model with Sertoli cell-specific transgenic androgen receptor expression (TgSCAR) showing that SCAR activity controls the synchronized postnatal development of somatic Sertoli and Leydig cells and meiotic-postmeiotic germ cells. Moderate TgSCAR (TgSCARm) expression reduced testis size but had no effect on male fertility. Here, we reveal that higher TgSCAR expression (TgSCARH) causes male infertility. Higher SCAR activity, shown by upregulated AR-dependent transcripts ( Rhox5, Spinw1), resulted in smaller adult TgSCARH testes (50% of normal) despite normal or elevated circulating and intratesticular testosterone levels. Unlike fertile TgSCARm males, testes of adult TgSCARH males exhibited focal regions of interstitial hypertrophy featuring immature adult Leydig cells and higher intratesticular dihydrotestosterone and 5α-androstane 3α,17β-diol levels that are normally associated with pubertal development. Mature TgSCARH testes also exhibited markedly reduced Sertoli cell numbers (70%), although meiotic and postmeiotic germ cell/Sertoli cell ratios were twofold higher than normal, suggesting that elevated TgSCAR activity supports excessive spermatogenic development. Concurrent with the higher germ cell load of TgSCARH Sertoli cells were increased levels of apoptotic germ cells in TgSCARH relative to TgSCARm testes. In addition, TgSCARH testes displayed unique morphological degeneration that featured accumulated cellular and spermatozoa clusters in dilated channels of rete testes, consistent with reduced epididymal sperm numbers. Our findings reveal for the first time that excessive Sertoli cell AR activity in mature testes can reach a level that disturbs Sertoli/germ cell homeostasis, impacts focal Leydig cell function, reduces sperm output, and disrupts male fertility.


Reproduction ◽  
2001 ◽  
pp. 287-296 ◽  
Author(s):  
MA Peters ◽  
KJ Teerds ◽  
I van der Gaag ◽  
DG de Rooij ◽  
FJ van Sluijs

Testicular tumours in dogs are of Sertoli cell, Leydig cell or germinal origin and mixed tumours are also frequently observed. The cellular components of mixed tumours are usually identified by histological examination but sometimes this is difficult. In this study, a panel of specific antibodies was used to identify the different cell types in testicular tumours by immunohistochemistry. Leydig cells were identified using an antibody against the LH receptor and an antibody against the steroidogenic enzyme 3beta-hydroxysteroid dehydrogenase (3beta-HSD), both of which are characteristic of Leydig cells in testes. Sertoli cells were identified using an antibody against the intermediate filament vimentin. Seminoma cells did not stain with any of these antibodies. Vimentin was used only in histologically complex cases. Eighty-six tumours, diagnosed histologically as 29 Sertoli cell tumours, 25 Leydig cell tumours, 19 seminomas and 13 mixed tumours, were studied. Feminization was observed in 17 dogs. Leydig cell tumours stained positively with the antibodies against the LH receptor and 3beta-HSD, whereas seminomas and Sertoli cell tumours were negative (unstained). The antibody against vimentin stained both Sertoli and Leydig cells, and tumours arising from these cells, but not seminomas. Immunohistochemistry revealed that three tumours identified histologically as Sertoli cell tumours were actually Leydig cell tumours. In 14 dogs the histological diagnosis appeared to be incomplete, as mixed tumours instead of pure types of tumours were identified in 11 dogs, and in three dogs mixed tumours appeared to be pure types. Hence, the histological diagnosis was insufficient in approximately 20% of dogs. Furthermore, immunohistochemical analysis of testis tumours revealed that feminization occurred in dogs with Sertoli cell tumours or Leydig cell tumours and their combinations, but not in dogs with a seminoma. In conclusion, incubation with antibodies against LH receptor and 3beta-HSD proved to be a consistently reliable method for identification of Leydig cell tumours in dogs. Vimentin can be used to discriminate between Sertoli cell tumours and seminomas. Overall, this panel of antibodies can be very useful for determination of the identity of testicular tumours in which histological characterization is complicated and the pathogenesis of feminization is not clear.


2017 ◽  
Vol 38 (4Supl1) ◽  
pp. 2551
Author(s):  
Juliana Stephany de Souza ◽  
Maria Carolina Villani Miguel ◽  
Marcos Antônio Maioli ◽  
Arthur Nelson Trali Neto ◽  
David Giraldo Arana ◽  
...  

The study of gonadal development improves the understanding of factors that can influence the reproductive development process. This study aims to characterize bovine fetal testicular development and the testosterone level in the Nellore breed. For the study, 162 bovine fetuses aged between 3 and 8 months were collected from Nellore cows at a local abattoir. The fetal age was estimated by DP=8.4+0.087L+5.46?L, where DP is the estimated pregnancy day and L represents fetal length. The fetal gonadal weight (g), width (cm), and thickness (cm) were measured. Thereafter, the gonads were submitted to classic histology processes in 3-µm-thick slices cut at 210 µm intervals. The Sertoli cells, Leydig cells, and germ cells were counted. Blood samples were collected from umbilical cords for testosterone levels. The data were analyzed using the Spearman correlation test followed by Principal Component Analysis and one-way ANOVA to compare the averages between months. The testicular weight and volume were found to have a positive correlation with the numbers of Sertoli cells (r = 0.84; p < 0.0001 and r = 0.92; p < 0.0001, respectively), Leydig cells (r = 0.80; p < 0.0001 and r = 0.90; p < 0.0001, respectively), and germ cells (r = 0.84; p < 0.0001 and r = 0.93; p < 0.0001, respectively) and to be negatively correlated with testosterone plasmatic concentration (r = -0.31; p = 0.0001 and r = -0.22; p = 0.006, respectively) during pregnancy. After the fifth month, the numbers of Sertoli cells, Leydig cells and germ cells differed (p < 0.0001) from the following gestational months. The highest testosterone concentration (p = 0.007) was observed in the fifth month of gestation and was followed by a concentration decrease in the seventh and eighth months. The increase in cell quantity was responsible for the increase in testicular weight and volume during fetal development. On the other hand, the testosterone concentration followed the increase in testicular weight and volume until the 7th month of gestation and regressed during the 8th and 9th months, in addition to the increase in cell number.


2007 ◽  
Vol 19 (5) ◽  
pp. 664 ◽  
Author(s):  
S. Haeussler ◽  
R. Claus

The glucocorticoid (GC)–cortisol receptor (GCR)–11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) system is involved in the regulation of Leydig cell function and spermatogenesis in mature animals. Herein, we describe the expression of the GCR and 11β-HSD2 and the occurrence of apoptosis during fetal development. Male fetuses were collected from Weeks 6, 10, 13, and 15 of pregnancy and from neonates. The testes were used for the immunocytochemical staining of GCR, 11β-HSD2 and for terminal deoxyribonucleotidyl transferase-mediated dUTP–digoxigenin nick end-labelling (TUNEL) staining of apoptosis. Apoptosis did not occur in any Leydig cells, but approximately 30% expressed GCR and 11β-HSD2. The number of GCR-positive cells was similar at all stages, but the number of 11β-HSD2-positive cells tended to be higher at Weeks 6 and 15. Steroid synthesis was also higher compared with Weeks 10 and 13. Apoptosis occurred in only a few germ cells. Nearly all germ cells were GCR positive at Weeks 10 and 13, when 11β-HSD2 was also increased. The total number of 11β-HSD2-positive germ cells was approximately 30%. Thus, elevated GCR expression coincided with the differentiation of gonocytes to spermatogonia and their migration to the basal lamina.


Reproduction ◽  
2012 ◽  
Vol 143 (5) ◽  
pp. 663-672 ◽  
Author(s):  
Tomoko Kato ◽  
Michiyo Esaki ◽  
Ayami Matsuzawa ◽  
Yayoi Ikeda

The orphan nuclear receptor steroidogenic factor 1 (NR5A1 (SF-1)) is expressed in both Sertoli and Leydig cells in the testes. This study investigates the postnatal development of the testes of a gonad-specific Nr5a1 knockout (KO) mouse, in which Nr5a1 was specifically inactivated. The KO testes appeared histologically normal from postnatal day 0 (P0) until P7. However, disorganized germ cells, vacuoles, and giant cells appeared by P14 in the seminiferous tubules of KO but not control mice. Expression of NR5A1 and various factors was examined by immunohistochemistry (IHC). The number of NR5A1-positive Sertoli cells in the KO testes was lower compared with controls at all the developmental stages and decreased to nearly undetectable levels by P21. IHC for anti-Müllerian hormone and p27, immature and mature Sertoli cell markers, respectively, indicated a delay in Sertoli cell maturation in the KO testes. The number of Sertoli cell-expressing factors involved in Sertoli cell differentiation including WT1, SOX9, GATA4, and androgen receptor were lower in the KO testes compared with controls. Furthermore, fewer proliferating cell nuclear antigen-positive proliferative germ cells were observed, and the number of TUNEL-labeled cells was significantly higher in the KO testes compared with controls at P14 and P21, indicating impaired spermatogenesis. IHC for CYP11A1 (SCC) indicated the presence of steroidogenic Leydig cells in the interstitium of the KO testes at all stages examined. These results suggest that NR5A1 is essential for Sertoli cell maturation and therefore spermatogenesis, during postnatal testis development.


Sign in / Sign up

Export Citation Format

Share Document