Synchronisation of canine germinal vesicle stage oocytes prior to in vitro maturation alters the kinetics of nuclear progression during subsequent resumption of meiosis

2008 ◽  
Vol 20 (5) ◽  
pp. 606 ◽  
Author(s):  
Carol Hanna ◽  
Suzanne Menges ◽  
Duane Kraemer ◽  
Charles R. Long

Inhibition of meiosis before in vitro maturation (IVM) can improve meiotic competence in immature mammalian oocytes. Therefore, meiosis-inhibiting agents were evaluated singularly for the ability to arrest and synchronise germinal vesicle (GV) stage canine oocytes, and the most effective treatments were combined to improve meiotic resumption rates. Oocytes cultured in 2 ng mL–1 oestradiol (E2), 10 IU mL–1 eCG, or both (EG) for 72 h resulted in significantly fewer oocytes resuming meiosis in EG than the control, E2, or with eCG. Oocytes cultured in 50 or 100 μmol L–1 of butyrolactone 1 or roscovitine (ROS) for up to 48 h did not resume meiosis nor increase subsequent meiotic resumption rates following IVM. A combination of 50 μmol L–1 ROS and EG treatment for 48 h significantly increased the proportion of canine oocytes in meiotic arrest. More importantly, following 48 h of IVM, ROS+EG-treated oocytes demonstrated a dramatic increase in the ability to resume meiosis compared with the non-treated controls (51.3 ± 8.2% and 10.8 ± 4.5%, respectively; P < 0.05). These data indicate that chemical and biological meiotic inhibitors are effective at inducing GV arrest in canine oocytes. Furthermore, these inhibitors are reversible and beneficial to subsequent meiotic resumption in vitro.

2018 ◽  
Vol 26 (11) ◽  
pp. 1519-1537
Author(s):  
Maxim Filatov ◽  
Yulia Khramova ◽  
Maria Semenova

Mechanisms of meiotic prophase I arrest maintenance (germinal vesicle [GV] stage) and meiotic resumption (germinal vesicle breakdown [GVBD] stage) in mammalian oocytes seem to be very complicated. These processes are regulated via multiple molecular cascades at transcriptional, translational, and posttranslational levels, and many of them are interrelated. There are many molecular cascades of meiosis maintaining and meiotic resumption in oocyte which are orchestrated by multiple molecules produced by pituitary gland and follicular cells. Furthermore, many of these molecular cascades are duplicated, thus ensuring the stability of the entire system. Understanding mechanisms of oocyte maturation is essential to assess the oocyte status, develop effective protocols of oocyte in vitro maturation, and design novel contraceptive drugs. Mechanisms of meiotic arrest maintenance at prophase I and meiotic resumption in mammalian oocytes are covered in the present article.


2015 ◽  
Vol 27 (1) ◽  
pp. 244
Author(s):  
N. A. Martino ◽  
M. E. Dell'Aquila ◽  
M. F. Uranio ◽  
R. Lampignano ◽  
G. M. Lacalandra ◽  
...  

Immature equine oocytes may be held overnight in an Earle's/Hanks' M199-based medium in the absence of meiotic inhibitors (EH medium) to schedule the onset of in vitro maturation. Holding in EH has been shown not to affect meiotic or developmental competence of equine oocytes (Choi et al. 2006 Theriogenology 66, 955–963). However, no studies have been performed to identify the mode by which this medium suppresses meiosis. We hypothesised that holding temperature may affect oocyte meiotic arrest. The effect of 3 holding temperatures (25, 30, 38°C) on chromatin status was investigated after Hoechst 33258 staining (Hinrichs et al. 2005 Biol. Reprod. 72, 1142–1150). Oocytes were recovered by scraping of follicles from slaughterhouse-derived ovaries. Data were analysed by Chi-squared test and one-way ANOVA followed by Dunn's or Holm-Sidak Multiple Comparison methods. A level of P < 0.05 was considered significant. There were no significant differences in chromatin configuration between oocytes held overnight at 25°C (25°C-held) and controls (immediately-fixed oocytes); the proportion of oocytes showing meiotic resumption was 1/27, 4% and 0/26, 0%, respectively (not significant, NS). In contrast, holding at higher temperature significantly increased meiosis resumption (14/38, 37% and 14/28, 50%, at 30 and 38°C, respectively; P < 0.01) and reduced the proportion of oocytes showing the most meiotically-competent germinal-vesicle (GV) configuration (condensed chromatin, CC; 24 to 29% v. 65 to 70% for control and 25°C-held, respectively; P < 0.05). Based on these results, a subsequent experiment was performed in which oocyte meiotic stage and mitochondrial (mt) potential of 25°C-held (n = 29) and control (n = 36) oocytes was evaluated. Nuclear chromatin, mt activity (MitoTracker orange), intracellular reactive oxygen species (ROS) levels (2′,7′-dichlorodihydrofluorescein diacetate, DCDHFDA), and mt/ROS colocalization (Pearson's coefficient) were analysed by epifluoscence and confocal microscopy (Martino et al. 2012 Fertil. Steril. 97, 720–728). Meiotic arrest after EH treatment at 25°C was confirmed (0/29, 0% v. 5/36, 14% for meiotic resumption in 25°C-held and controls, respectively; NS). At any GV stage, 25°C-held treatment had no effect on mt activity, ROS levels, or mt/ROS colocalization. For example, in CC oocytes, values for control and 25°C-held, respectively, were: MitoTracker, 547.8 ± 499.5 v. 722.9 ± 390.3; DCF fluorescence intensity, 278.5 ± 179.3 v. 378 ± 185, and mt/ROS colocalization, 0.5 ± 0.1 v. 0.5 ± 0.2; these were not significantly different (NS). In conclusion, EH holding at 25°C maintains meiotic arrest, viability, and mt potential of equine oocytes.


2017 ◽  
Vol 65 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Katsutoshi Nishio ◽  
Mado Yamazaki ◽  
Masayasu Taniguchi ◽  
Kazuhiko Besshi ◽  
Fumio Morita ◽  
...  

The present study was conducted to clarify whether the meiotic stage of porcine oocytes has the highest sensitivity to hyperthermia during in vitro maturation by evaluating meiotic competence and DNA damage. Oocytes were exposed to 41 °C for 12 h at various intervals during 48 h of maturation culture. When the oocytes were exposed to 41 °C from 12 to 24 h of the maturation culture, the proportion of oocytes reaching metaphase II (MII) decreased as compared to the control oocytes cultured at 38.5 °C (P < 0.05). Moreover, the proportions of DNA fragmentation in all oocytes exposed to 41 °C in each culture period after 12 h from the start of maturation culture were significantly higher (P < 0.05) than for the control oocytes. When the meiotic stage of oocytes cultured at 38.5 °C between 12 and 24 h was examined, the majority of oocytes remained at the germinal vesicle (GV) stage at 12 h and approximately half of the oocytes reached metaphase I (MI) at 24 h. These results indicate that the meiotic stage of porcine oocytes having the highest sensitivity to hyperthermia during in vitro maturation is a transition period from the GV stage to the MI stage.


Zygote ◽  
2004 ◽  
Vol 12 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Boon Chin Alexis Heng ◽  
Ng Soon Chye

This study attempted to develop a ‘less meiotically competent’ murine model for oocyte in vitro maturation (IVM), which could more readily be extrapolated to human clinical assisted reproduction. Oocyte meiotic competence was drastically reduced upon shortening the standard duration of in vivo gonadotrophin stimulation from 48 h to 24 h, and by selecting only naked or partially naked germinal vesicle oocytes, instead of fully cumulus enclosed oocyte complexes. With such a less meiotically competent model, only porcine granulosa coculture significantly enhanced the oocyte maturation rate in vitro, whereas no significant enhancement was observed with macaque and murine granulosa coculture. Increased serum concentrations and the supplementation of gonadotrophins, follicular fluid and extracellular matrix gel within the culture medium did not enhance IVM under either cell-free or coculture conditions. Culture medium conditioned by porcine granulosa also enhanced the maturation rate, and this beneficial effect was not diminished upon freeze–thawing. Enhanced IVM in the presence of porcine granulosa coculture did not, however, translate into improved developmental competence, as assessed by in vitro fertilization and embryo culture to the blastocyst stage.


2006 ◽  
Vol 58 (3) ◽  
pp. 354-359 ◽  
Author(s):  
P.R. Adona ◽  
C.L.V. Leal

The effect of concentration and exposure period of bovine oocytes to butyrolactone I (BLI) on meiotic block and in vitro maturation (IVM) kinetics was studied. In experiment 1, all oocytes were at germinal vesicle stage (GV), after 6h in culture with 0, 50 and 100µM BLI. After 12h, all oocytes cultured with 50 and 100µM BLI remained in GV. After 24h, less oocytes were in GV with 50µM (82%) than with 100µM BLI (99%, P<0.05). In experiment 2, after 6h IVM, 93% of control oocytes (IVM only) were in GV, while treated oocytes (100µM BLI for 6, 12 or 24h prior to IVM) showed less oocytes in GV with increased exposure period to BLI prior to IVM (83 and 73%, for 6h and 12h, P<0.05). For a 24h inhibition, GV rates were similar to 12h (70%, P>0.05). After 18h IVM, metaphase II (MII) rates were similar for all groups (76-81%). In experiment 3, after 6h IVM, 74% of treated oocytes (50 or 100µM BLI for 12h) were in GV. This rate was lower than for control oocytes (97.3%, P<0.05). After 18h IVM more oocytes (~80%, P>0.05) were in MII with BLI than for control (73%, P<0.05). Shorter culture periods require lower BLI concentration for meiotic block; initial nuclear maturation kinetics of oocytes cultured with BLI is accelerated, and this is affected by culture period but not by drug concentration.


Author(s):  
Letícia Ferrari Crocomo ◽  
Federica Ariu ◽  
Luisa Bogliolo ◽  
Daniela Bebbere ◽  
Sergio Ledda ◽  
...  

Abstract: The objective of this work was to evaluate the efficiency of roscovitine on reversibly inhibiting oocytes from prepubertal sheep at the germinal vesicle (GV) stage, and to investigate the kinetics of meiosis progression after inhibitor removal. Cumulus-oocyte complexes, recovered from Sarda breed lambs aged 30-40 days, were cultured for 6 hours in a maturation medium (control) containing 75 μmol L-1 roscovitine (Rosco) at 38.5°C and 5% CO2. Then, the complexes were subjected to in vitro maturation (IVM) for 18 or 23 hours, in an inhibitor-free medium supplemented with gonadotropins. The evaluation of nuclear configuration by Hoescht staining, under a fluorescence-inverted microscope, showed that 88.7% of the lamb oocytes treated with roscovitine remained at the GV stage, as observed for the immature ones (97.3%) stained after collection. The inhibitory action was reversible; however, the proportion of oocytes (83.3%) at the metaphase-II stage, after 23 hours of IVM, was significantly higher than that observed after 18 hours (29.5%), in which meiosis was still in progression with 34.2% oocytes at metaphase-I, 11.6% oocytes at anaphase-I, and 18.5% oocytes at telophase-I. Roscovitine is efficient to arrest the nuclear maturation in oocytes from prepubertal sheep; however, despite the reversibility, meiosis progression is delayed, requiring more time to be completed.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2324
Author(s):  
Shichao Guo ◽  
Jinyu Yang ◽  
Jianpeng Qin ◽  
Izhar Hyder Qazi ◽  
Bo Pan ◽  
...  

Previously it was reported that melatonin could mitigate oxidative stress caused by oocyte cryopreservation; however, the underlying molecular mechanisms which cause this remain unclear. The objective was to explore whether melatonin could reduce oxidative stress during in vitro maturation of vitrified-warmed mouse germinal vesicle (GV) oocytes through the Nrf2 signaling pathway or its receptors. During in vitro maturation of vitrified-warmed mouse GV oocytes, there were decreases (p < 0.05) in the development rates of metaphase I (MI) oocytes and metaphase II (MII) and spindle morphology grades; increases (p < 0.05) in the reactive oxygen species (ROS) levels; and decreases (p < 0.05) in expressions of Nrf2 signaling pathway-related genes (Nrf2, SOD1) and proteins (Nrf2, HO-1). However, adding 10−7 mol/L melatonin to both the warming solution and maturation solutions improved (p < 0.05) these indicators. When the Nrf2 protein was specifically inhibited by Brusatol, melatonin did not increase development rates, spindle morphology grades, genes, or protein expressions, nor did it reduce vitrification-induced intracellular oxidative stress in GV oocytes during in vitro maturation. In addition, when melatonin receptors were inhibited by luzindole, the ability of melatonin to scavenge intracellular ROS was decreased, and the expressions of genes (Nrf2, SOD1) and proteins (Nrf2, HO-1) were not restored to control levels. Therefore, we concluded that 10−7 mol/L melatonin acted on the Nrf2 signaling pathway through its receptors to regulate the expression of genes (Nrf2, SOD1) and proteins (Nrf2, HO-1), and mitigate intracellular oxidative stress, thereby enhancing in vitro development of vitrified-warmed mouse GV oocytes.


1997 ◽  
Vol 68 (2) ◽  
pp. 318-322 ◽  
Author(s):  
Jacob Farhi ◽  
Hana Nahum ◽  
Haim Zakut ◽  
David Levran

Author(s):  
Dulama Richani ◽  
Robert B Gilchrist

Abstract Oocytes are maintained in a state of meiotic arrest following the first meiotic division until ovulation is triggered. Within the antral follicle, meiotic arrest is actively suppressed in a process facilitated by the cyclic nucleotides cGMP and cAMP. If removed from this inhibitory follicular environment and cultured in vitro, mammalian oocytes undergo spontaneous meiotic resumption in the absence of the usual stimulatory follicular stimuli, leading to asynchronicity with oocyte cytoplasmic maturation and lower developmental competence. For more than 50 years, pharmacological agents have been used to attenuate oocyte germinal vesicle (GV) breakdown in vitro. Agents which increase intra-oocyte cAMP or prevent its degradation have been predominantly used, however agents such as kinase and protein synthesis inhibitors have also been trialled. Twenty years of research demonstrates that maintaining GV arrest for a period before in vitro maturation (IVM) improves oocyte developmental competence, and is likely attributed to maintenance of bidirectional communication with cumulus cells leading to improved oocyte metabolic function. However, outcomes are influenced by various factors including the mode of action of the modulators, dose, treatment duration, species, and the degree of hormonal priming of the oocyte donor. Cyclic GMP and/or cAMP modulation in a prematuration step (called pre-IVM) prior to IVM has shown the greatest consistency in improving oocyte developmental competence, whereas kinase and protein synthesis inhibitors have proven less effective at improving IVM outcomes. Such pre-IVM approaches have shown potential to alter current use of artificial reproductive technologies in medical and veterinary practice.


Sign in / Sign up

Export Citation Format

Share Document