Pluripotent cells in farm animals: state of the art and future perspectives

2013 ◽  
Vol 25 (1) ◽  
pp. 103 ◽  
Author(s):  
Monika Nowak-Imialek ◽  
Heiner Niemann

Pluripotent cells, such as embryonic stem (ES) cells, embryonic germ cells and embryonic carcinoma cells are a unique type of cell because they remain undifferentiated indefinitely in in vitro culture, show self-renewal and possess the ability to differentiate into derivatives of the three germ layers. These capabilities make them a unique in vitro model for studying development, differentiation and for targeted modification of the genome. True pluripotent ESCs have only been described in the laboratory mouse and rat. However, rodent physiology and anatomy differ substantially from that of humans, detracting from the value of the rodent model for studies of human diseases and the development of cellular therapies in regenerative medicine. Recently, progress in the isolation of pluripotent cells in farm animals has been made and new technologies for reprogramming of somatic cells into a pluripotent state have been developed. Prior to clinical application of therapeutic cells differentiated from pluripotent stem cells in human patients, their survival and the absence of tumourigenic potential must be assessed in suitable preclinical large animal models. The establishment of pluripotent cell lines in farm animals may provide new opportunities for the production of transgenic animals, would facilitate development and validation of large animal models for evaluating ESC-based therapies and would thus contribute to the improvement of human and animal health. This review summarises the recent progress in the derivation of pluripotent and reprogrammed cells from farm animals. We refer to our recent review on this area, to which this article is complementary.

2008 ◽  
Vol 20 (1) ◽  
pp. 218
Author(s):  
E. Østrup ◽  
K. Schauser ◽  
J. O. Gjørret ◽  
P. Maddox-Hyttel

Isolation and culture of mouse embryonic stem (ES) cells has been performed for many years, and the improvements achieved throughout the last decade in the human field has evoked great hopes for future cell replacement therapies. However, despite certain similarities in the molecular regulation of pluripotency between man and mouse, there is a need for developing large animal models. The aim of our study was to isolate, culture, and characterize bovine ES-like cell colonies derived from the epiblast. Embryos were produced by in vitro maturation, fertilization, and culture. After 6 days of in vitro culture, blastocysts were transferred to synchronized heifers and allowed to develop for an additional 6 days in vivo. At Day 12 after insemination, embryos were collected by nonsurgical flushing. Embryonic discs were isolated from 15 blastocysts by microsurgery and cultured on mitomycin-inactivated mouse embryonic fibroblasts (SLN cells) in DMEM/F12 medium supplemented with 15% fetal calf serum (FCS), 5% knockout serum replacement (KSR), 106UmL–1 leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF), nonessential amino acids (NEAA), and nucleosides. After 4 (n = 6), 6 (n = 4), and 8 days (n = 5) of culture, the primary outgrowth colonies were fixed in 4% paraformaldehyde, embedded in paraffin, sectioned, and exposed to antisera recognizing Oct-4 (pluripotency marker; Santa Cruz Biotechnology, Santa Cruz, CA, USA), Vimentin (mesenchyme marker; Zymed Laboratories, South San Francisco, CA, USA), Cytokeratin-8 (trophectoderm marker; Becton, Dickinson and Co., Franklin Lakes, NJ, USA), and α-1-Fetoprotein (hypoblast marker; DakoCytomation, Glostrup, Denmark). The site of antigen-antibody reaction was revealed using the ABC-AEC-method and counterstained with hematoxylin. At Day 4, all colonies had developed a compact central core of cells with a low cytoplasm-to-nucleus ratio, surrounded by a monolayer of squamous cells. At Days 6 and 8, 3 out of 4 and 3 out of 5 colonies, respectively, still presented the compact core which occasionally was encapsulated by a squamous or cuboidal cell sheet. In the remaining colonies, a compact core was less defined. Oct-3/4 staining was observed in the nuclei of the compact core in 5 out of 6 colonies on Day 4, and in all colonies presenting a compact core on Days 6 and 8. However, whereas all nuclei in the core were stained on Days 4 and 6, only scattered nuclei were stained on Day 8. Vimentin staining was observed in the cytoplasm of cells in the compact core in 3 out of 6 Day 4 colonies, in all Day 6 colonies presenting a compact core, but not in any Day 8 colonies. In contrast, α-1-Fetoprotein staining intensity increased with culture period and was mostly observed in squamous monolayer portions. Cytokeratin-8 staining was weak and restricted to the cytoplasm of the cells encapsulating and surrounding the core in 2 Day 6 colonies and a single Day 8 colony. In conclusion, epiblasts isolated from Day 12 bovine blastocysts efficiently attach to feeder cells and develop outgrowth colonies with cores containing presumptive pluripotent cells (Oct-4). However, these cells to some degree lost Oct-4 expression toward Day 8 and were, in parallel, to some degree overgrown by cells of hypoblast (α-1-Fetoprotein) and trophectoderm (Cytokeratin-8) origin.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 713
Author(s):  
Shu Fang ◽  
Ditte Gry Ellman ◽  
Ditte Caroline Andersen

To date, a wide range of materials, from synthetic to natural or a mixture of these, has been explored, modified, and examined as small-diameter tissue-engineered vascular grafts (SD-TEVGs) for tissue regeneration either in vitro or in vivo. However, very limited success has been achieved due to mechanical failure, thrombogenicity or intimal hyperplasia, and improvements of the SD-TEVG design are thus required. Here, in vivo studies investigating novel and relative long (10 times of the inner diameter) SD-TEVGs in large animal models and humans are identified and discussed, with emphasis on graft outcome based on model- and graft-related conditions. Only a few types of synthetic polymer-based SD-TEVGs have been evaluated in large-animal models and reflect limited success. However, some polymers, such as polycaprolactone (PCL), show favorable biocompatibility and potential to be further modified and improved in the form of hybrid grafts. Natural polymer- and cell-secreted extracellular matrix (ECM)-based SD-TEVGs tested in large animals still fail due to a weak strength or thrombogenicity. Similarly, native ECM-based SD-TEVGs and in-vitro-developed hybrid SD-TEVGs that contain xenogeneic molecules or matrix seem related to a harmful graft outcome. In contrast, allogeneic native ECM-based SD-TEVGs, in-vitro-developed hybrid SD-TEVGs with allogeneic banked human cells or isolated autologous stem cells, and in-body tissue architecture (IBTA)-based SD-TEVGs seem to be promising for the future, since they are suitable in dimension, mechanical strength, biocompatibility, and availability.


Diagnostics ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 660
Author(s):  
Anca Onaciu ◽  
Raluca Munteanu ◽  
Vlad Cristian Munteanu ◽  
Diana Gulei ◽  
Lajos Raduly ◽  
...  

Considering the complexity of the current framework in oncology, the relevance of animal models in biomedical research is critical in light of the capacity to produce valuable data with clinical translation. The laboratory mouse is the most common animal model used in cancer research due to its high adaptation to different environments, genetic variability, and physiological similarities with humans. Beginning with spontaneous mutations arising in mice colonies that allow for pursuing studies of specific pathological conditions, this area of in vivo research has significantly evolved, now capable of generating humanized mice models encompassing the human immune system in biological correlation with human tumor xenografts. Moreover, the era of genetic engineering, especially of the hijacking CRISPR/Cas9 technique, offers powerful tools in designing and developing various mouse strains. Within this article, we will cover the principal mouse models used in oncology research, beginning with behavioral science of animals vs. humans, and continuing on with genetically engineered mice, microsurgical-induced cancer models, and avatar mouse models for personalized cancer therapy. Moreover, the area of spontaneous large animal models for cancer research will be briefly presented.


2011 ◽  
Vol 17 (4) ◽  
pp. 474-497 ◽  
Author(s):  
Monika Nowak-Imialek ◽  
Wilfried Kues ◽  
Joseph W. Carnwath ◽  
Heiner Niemann

AbstractPluripotent cells are unique because of their ability to differentiate into the cell lineages forming the entire organism. True pluripotent stem cells with germ line contribution have been reported for mice and rats. Human pluripotent cells share numerous features of pluripotentiality, but confirmation of their in vivo capacity for germ line contribution is impossible due to ethical and legal restrictions. Progress toward derivation of embryonic stem cells from domestic species has been made, but the derived cells were not able to produce germ line chimeras and thus are termed embryonic stem-like cells. However, domestic animals, in particular the domestic pig (Sus scrofa), are excellent large animals models, in which the clinical potential of stem cell therapies can be studied. Reprogramming technologies for somatic cells, including somatic cell nuclear transfer, cell fusion, in vitro culture in the presence of cell extracts, in vitro conversion of adult unipotent spermatogonial stem cells into germ line derived pluripotent stem cells, and transduction with reprogramming factors have been developed with the goal of obtaining pluripotent, germ line competent stem cells from domestic animals. This review summarizes the present state of the art in the derivation and maintenance of pluripotent stem cells in domestic animals.


2018 ◽  
Author(s):  
Lawrance Chandra ◽  
Dana C Borcherding ◽  
Dawn Kingsbury ◽  
Todd Atherly ◽  
Yoko M Ambrosini ◽  
...  

AbstractBackgroundLarge animal models, such as the dog, are increasingly being used over rodent models for studying naturally occurring diseases including gastrointestinal (GI) disorders. Dogs share similar environmental, genomic, anatomical, and intestinal physiologic features with humans. To bridge the gap between currently used animal models (e.g. mouse) and humans, and expand the translational potential of the dog model, we developed a three dimensional (3D) canine GI organoid (enteroid and colonoid) system. Organoids have recently gained interest in translational research as this model system better recapitulates the physiological and molecular features of the tissue environment in comparison with two-dimensional cultures.ResultsOrganoids were propagated from isolation of adult intestinal stem cells (ISC) from whole jejunal tissue as well as endoscopically obtained duodenal, ileal and colonic biopsy samples of healthy dogs and GI cases, including inflammatory bowel disease (IBD) and intestinal carcinomas. Intestinal organoids were comprehensively characterized using histology, immunohistochemistry, RNA in situ hybridization and transmission electron microscopy, and organoids mimicked the in vivo tissue environment. Physiological relevance of the enteroid system was defined using functional assays such as Optical Metabolic Imaging (OMI), the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) function assay, and Exosome-Like Vesicles (EV) uptake assay, as a basis for wider applications of this technology in basic, preclinical and translational GI research.ConclusionsIn summary, our findings establish the canine GI organoid systems as a novel model to study naturally occurring intestinal diseases in dogs and humans. Furthermore, canine organoid systems will help to elucidate host-pathogen interactions contributing to GI disease pathogenesis.


2016 ◽  
Vol 28 (2) ◽  
pp. 112 ◽  
Author(s):  
Irina A. Polejaeva ◽  
Heloisa M. Rutigliano ◽  
Kevin D. Wells

Livestock models have contributed significantly to biomedical and surgical advances. Their contribution is particularly prominent in the areas of physiology and assisted reproductive technologies, including understanding developmental processes and disorders, from ancient to modern times. Over the past 25 years, biomedical research that traditionally embraced a diverse species approach shifted to a small number of model species (e.g. mice and rats). The initial reasons for focusing the main efforts on the mouse were the availability of murine embryonic stem cells (ESCs) and genome sequence data. This powerful combination allowed for precise manipulation of the mouse genome (knockouts, knockins, transcriptional switches etc.) leading to ground-breaking discoveries on gene functions and regulation, and their role in health and disease. Despite the enormous contribution to biomedical research, mouse models have some major limitations. Their substantial differences compared with humans in body and organ size, lifespan and inbreeding result in pronounced metabolic, physiological and behavioural differences. Comparative studies of strategically chosen domestic species can complement mouse research and yield more rigorous findings. Because genome sequence and gene manipulation tools are now available for farm animals (cattle, pigs, sheep and goats), a larger number of livestock genetically engineered (GE) models will be accessible for biomedical research. This paper discusses the use of cattle, goats, sheep and pigs in biomedical research, provides an overview of transgenic technology in farm animals and highlights some of the beneficial characteristics of large animal models of human disease compared with the mouse. In addition, status and origin of current regulation of GE biomedical models is also reviewed.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4059-4059
Author(s):  
Aravind Ramakrishnan ◽  
Brian Hayes ◽  
Sara R. Fagerlie ◽  
Szczepan Baran ◽  
Michael Harkey ◽  
...  

Abstract Embryonic stem (ES) cells have created considerable excitement in the last few years due to their unlimited potential to produce cells for tissue repair and replacement. However, a large animal pre-clinical model is necessary to establish the safety and efficacy of ES cell-derived tissue replacement therapy. The canine model has long been used in medical research, has been well established to study adult stem cell transplantation and has been highly predictive of clinical outcomes in humans, more so than rodent models. Given the documented record for extrapolating from dog to man, we hypothesize that the dog would serve as an ideal pre-clinical in vivo model for studying the clinical applications of ESC derived tissue. Eleven putative ES cell lines were initiated from canine blastocysts harvested from natural matings. One line described here, FHDO-7, has been maintained through 34 passages and has many characteristics of ES cells from other species. FHDO-7 cells are alkaline phosphatase positive and express both message and protein for the Oct4 transcription factor. They also express message for Nanog and do not express message for Cdx2 which is associated with trophectoderm. Furthermore, they express a cluster of pluripotency-associated microRNAs (miR-302b, miR-302c and miR-367) that have been found to be characteristic of human and mouse ES cells. The FHDO-7 cells grow on feeder layers of modified mouse embryonic fibroblasts (MEF) as flat colonies that resemble ES cells from mink, a close phylogenetic relative of dog. When cultured in nonadherent plates without feeders the cells form embryoid bodies (EB). Under various culture conditions the EBs give rise to ectoderm-derived neuronal cells expressing β3-tubulin, mesoderm-derived osteocytes producing bone, and endoderm-derived cells expressing alpha feto protein or Clara cell specific protein. These results indicate that FHDO-7 is a pluripotent embryonic stem cell line.


Biomaterials ◽  
2004 ◽  
Vol 25 (9) ◽  
pp. 1487-1495 ◽  
Author(s):  
Pieter Buma ◽  
Willem Schreurs ◽  
Nico Verdonschot

1994 ◽  
Vol 6 (5) ◽  
pp. 569 ◽  
Author(s):  
RA Cherny ◽  
TM Stokes ◽  
J Merei ◽  
L Lom ◽  
MR Brandon ◽  
...  

The practical application of advanced breeding technologies and genetic manipulation of domestic animals is dependent on the efficient and routine isolation of embryonic stem (ES) cell lines from these species. ES cell lines of proven totipotency have thus far been isolated only from the mouse. Murine ES cells can be identified by a number of criteria including morphology and characteristics in culture, the presence of specific markers, differentiative capacity and contribution to chimaeras. Reported cell lines derived from ruminant preimplantation embryos do not stably exhibit these characteristics. As demonstrated for the mouse, primordial germ cells may provide an alternative source for pluripotential cell lines. The isolation, culture and preliminary characterization of bovine primordial germ cell-derived (PGCd) cells are described in this paper. The PGCd cells are capable of differentiation in vitro and display murine ES cell markers including alkaline phosphatase. With farm animals, long generation intervals and small numbers of offspring make it important to develop techniques for evaluating chimaeric embryos in vitro before embarking on expensive in vivo programmes. A method for labelling putative pluripotential cells with a fluorochrome marker to follow the fate of such cells was developed. Labelled PGCd cells were injected into blastocysts and the chimaeric embryos were monitored in vitro. Preliminary results demonstrate that the labelled PGCd cells incorporate preferentially within the inner cell mass of the host blastocyst.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document