83 IN VITRO DEVELOPMENTAL ABILITIES OF PORCINE CLONED EMBRYOS RECONSTITUTED WITH CELL NUCLEI OF GENETICALLY TRANSFORMED FETAL FIBROBLASTS CYTOMETRICALLY DIAGNOSED ON CELL CYCLE AND APOPTOSIS

2007 ◽  
Vol 19 (1) ◽  
pp. 159
Author(s):  
M. Samiec ◽  
M. Skrzyszowska ◽  
M. Bochenek ◽  
D. Lipinski ◽  
R. Slomski

The important factor that determines the development of mammalian cloned embryos is structuro-functional quality of nuclear donor cells. Analysis of nuclear DNA (nDNA) content of somatic cells undergoing apoptosis has become one of the most common methods for single-parameter flow cytometric measurement of this process. Apoptosis assessment is performed by quantification of hypodiploid cells. The aim of our study was to examine the in vitro developmental potential of porcine nuclear transfer (NT) embryos reconstituted with non-apoptotic fetal fibroblast cells expressing the eGFP transgene. The nuclear donor cells were derived from cell line populations whose representative random samples had been analyzed on both cell cycle and apoptosis through non-vital nDNA fluorescent dyeing and flow cytometry (FACS). Frozen-thawed fibroblast cells, which had been cultured up to a total confluency after 2–4 passages, were used for the diagnostics. The cells were fixed in ice-cold 70% ethanol. Then, the fetal fibroblasts were exposed to nDNA extraction buffer for 5 min at room temperature, and incubated in DNA staining solution (propidium iodide and RNAse) for 30 min. After fluorescent labeling, the cells were analyzed in the flow cytometer by reading nDNA fluorescence in the red band. In vitro-matured oocytes were the source of recipient cells. Fibroblast cell–ooplast couplets were simultaneously fused and activated. Reconstructed embryos were cultured in NCSU-23/BSA/FBS medium for 6–7 days. The rates of cleavage and development to morula/blastocyst stages were examined on Days 2 and 6/7, respectively. FACS analysis revealed that, out of all of the diagnosed fetal fibroblast cells, 54.7% were cycling, and up to 45.3% were late-apoptotic. In turn, from among the normal (i.e. non-apoptotic) cells, 82.2% were at G0/G1 stages of cell cycle, 17.0% at the S stage, and 0.8% at G2/M stages. A total of 150 enucleated oocytes were successfully fused with non-apoptotic transgenic nuclear donor cells. Out of 150 cultured NT embryos, 123 (82.0%) were cleaved. The frequencies of cloned embryos that reached the morula and blastocyst stages yielded 53/150 (35.3%) and 37/150 (24.7%), respectively. In conclusion, the FACS analysis for mitotic cycle of 100%-confluent transgenic fetal fibroblasts confirmed the high efficiency of the cell cycle synchronization at G0/G1 phases. However, a contact inhibition method induced the high frequency of late-apoptotic cells. Moreover, the relatively high percentage of NT blastocysts was developed from oocytes reconstructed with eGFP transgenic fetal fibroblast cells. This research was supported by the State Committee for Scientific Research as a Solicited Project number PBZ-MIN-005/P04/2002/6 from year 2003 to year 2006.

2009 ◽  
Vol 21 (1) ◽  
pp. 125
Author(s):  
M. Samiec ◽  
M. Skrzyszowska ◽  
M. Bochenek ◽  
R. Slomski ◽  
D. Lipinski

Analysis of nuclear DNA (nDNA) content of in vitro cultured somatic cells undergoing apoptosis became one of the most common methods for single-parameter flow cytometric measurement of this process. Apoptosis assessment is performed by quantification of hypodiploid cells. The cell fractions with hypodiploid (<2C) nDNA molecule number, which involve the so-called sub-G1 peak in DNA histograms are identified as late-apoptotic subpopulations. Advantage of this method is the possibility of simultaneous cell cycle measurement. The present study was conducted to investigate the preimplantation developmental outcome of porcine transgenic NT embryos reconstituted with non-apoptotic gilt ear skin-derived fibroblast cells that had been lipofected with pWAPhGH-GFPBsd gene construct. The nuclear donor cells were derived from such cell line populations whose representative random samples had been analyzed on both cell cycle and apoptosis through the non-vital nDNA fluorescent dyeing and subsequent flow cytometry (FACS). Frozen/thawed fibroblast cells, which had been cultured up to a total confluency after 2–3 passages, were used for the diagnostics. The fixed dermal fibroblasts were exposed to nDNA extraction buffer for 5 min and incubated in DNA staining solution (propidium iodide and RNAse) for 30 min. After fluorescent labeling, the cells were analyzed in the flow cytometer by reading nDNA fluorescence in the red band. Somatic cell cloned embryos, which had been created by simultaneous fusion and electrical activation, followed by delayed chemical activation of reconstructed oocytes, were cultured in NCSU-23/FBS medium for 6 to 7 days up to morula/blastocyst stages (Skrzyszowska et al. 2008 Theriogenology 70, 248–259). The FACS analysis revealed that out of all the fibroblast cells diagnosed, 94.9% were cycling and 5.1% were late-apoptotic. In turn, from among the non-apoptotic cells, an average of 92.7% were at G1/G0 stages of cell cycle, 3.1% were at S stage and 4.2% were at G2/M stages. A total of 294/348 (84.5%) enucleated oocytes were successfully fused with non-apoptotic nuclear donor cells. Out of 294 cultured NT embryos, 199 (67.7%) were cleaved. The rates of cloned embryos that reached the morula and blastocyst stages yielded 165/294 (56.1%) and 57/294 (19.4%), respectively. In conclusion, the FACS analysis for mitotic cycle of 100%-confluent lipofected adult dermal fibroblasts confirmed that the cell cycle synchronization at G1/G0 phases was highly efficient, while the frequency of late-apoptotic cells was low. It was also found that the relatively high percentages of pWAPhGH-GFPBsd transgenic blastocysts developed in vitro from NT embryos reconstructed with fibroblast cells undergoing lipofection. Furthermore, porcine cloned blastocysts exhibited approximately 100% index of reporter eGFP transgene expression, which was visually confirmed by their live-fluorescent evaluation. This work was supported by the Scientific Net of Animal Reproduction Biotechnology.


Reproduction ◽  
2001 ◽  
pp. 925-932 ◽  
Author(s):  
X Li ◽  
LH Morris ◽  
WR Allen

The influence of co-culture with either oviduct epithelial cells or fetal fibroblast cells on in vitro maturation of equine oocytes and their potential for development to blastocysts and fetuses after intracytoplasmic sperm injection (ICSI) was investigated. The oocytes were obtained from ovaries from abattoirs and were matured in vitro for 28-30 h in TCM-199 only, or in TCM-199 co-culture with oviduct epithelial cells or fetal fibroblast cells. Metaphase II oocytes were subjected to ICSI with an ionomycin-treated spermatozoon. The injected oocytes were cultured for 7-9 days in Dulbecco's modified Eagle's medium. Morphologically normal early blastocysts were transferred to the uteri of recipient mares. Nuclear maturation rates and the rates of cleavage to the two-cell stage for injected oocytes were similar in the groups of oocytes that were matured in TCM-199 (49 and 63%), in co-culture with oviduct epithelial cells (53 and 65%) or in co-culture with fetal fibroblasts (51 and 57%). There were no significant differences in the proportions of blastocysts that developed from the two-cell embryos derived from oocytes matured by co-culture with either oviduct epithelial cells (30%) or fetal fibroblasts (17%). However, significantly higher proportions of blastocysts were produced from both these co-culture groups than from the groups of oocytes matured in TCM-199 only (P < 0.05). Six of the blastocysts that had developed from oocytes co-cultured with oviduct epithelial cells were transferred into recipient mares and four pregnancies resulted. These results demonstrate a beneficial influence of co-culture with either oviduct epithelial cells or fetal fibroblasts for maturation of oocytes in vitro.


2005 ◽  
Vol 17 (2) ◽  
pp. 182 ◽  
Author(s):  
M. Skrzyszowska ◽  
M. Samiec

One of the most important factors that determine the developmental potential of mammalian cloned embryos is the structuro-functional quality of nuclear donor cells. Biochemical changes that are some of the earliest symptoms of apoptosis signal transduction are not reflected in the morphological features of somatic cells. Therefore, an appropriate system of cell selection would enable the sorting of donor nuclei with high morphological and biochemical susceptibility to somatic cloning. The aim of our study was to examine the in vitro developmental competencies of porcine nuclear transfer (NT) embryos reconstructed with fetal fibroblast cells that had been analyzed for apoptosis by live-fluorescent labelling. Frozen/thawed fetal fibroblast cells, which had been in vitro-cultured to a confluent state, were used for analysis. To detect the early apoptotic changes in the fibroblast cells, a single cell suspension of nuclear donor cells was subjected to dyeing with live-DNA green fluorochrome YO-PRO-1. The recipient cells were in vitro-matured oocytes. Maternal chromosomes were removed by a chemically assisted microsurgical technique. Then, single nuclear donor cells were inserted into the perivitelline space of enucleated oocytes. Fibroblast cell-ooplast couplets were simultaneously fused and activated with two consecutive DC pulses of 1.2 kV/cm for 60 μs. Reconstructed embryos were in vitro cultured in 50-μL drops of NCSU-23 medium supplemented with 0.4% BSA-V for 6 to 7 days at 38.5°C in a humidified atmosphere of 5% CO2 and 95% air. The rates of cleavage and development to morula/blastocyst stages were examined on Days 2 and 6/7, respectively. After fluorescent analysis of approximately 50 different random samples collected from the population of fetal fibroblast cells, that had been labelled with YO-PRO-1 dye, it was found that a relatively high proportion of donor cells revealed ultrastructural apoptotic changes. The percentage of late apoptotic cells with advanced morphological transformations was about 40% of the total pool of the fibroblast cells. A total of 262/270 (97.0%) enucleated oocytes were subjected to reconstruction and 141/262 (53.8%) were successfully fused with non-apoptotic nuclear donor cells. Following the simultaneous fusion/activation protocol, reconstituted oocytes were selected for in vitro culture. Out of 262, 133 (50.8%) cultured NT embryos cleaved. The frequencies of cloned embryos that reached the morula and blastocyst stages were 48/133 (36.0%) and 10/133 (7.5%), respectively. In conclusion, morphology is a sufficient selection factor for detection of apoptosis in the cultured (confluent) fetal fibroblast cells to be used for cloning. Moreover, it was found that YO-PRO-1 fluorochrome may be not able to detect the early phases of apoptosis, because only the morphologically abnormal cells emitted the YO-PRO-1-derived fluorescence. This research was supported by the State Committee for Scientific Research as a Solicited Project number PBZ-KBN-084/P06/2002/4.2 from years 2003 to 2005.


2007 ◽  
Vol 19 (1) ◽  
pp. 168
Author(s):  
V. Zakhartchenko ◽  
F. Yang ◽  
R. Hao ◽  
E. Wolf

Epigenetic status of the genome of a donor nucleus is likely to be associated with the developmental potential of cloned embryos produced by somatic cell nuclear transfer (SCNT). Prevention of epigenetic errors by manipulation of the epigenetic status of donor cells is expected to result in improvement of cloning efficiency. In this study, we transferred cultured rabbit cumulus cells (RCC) and fetal fibroblasts (RFF) from genetically marked rabbits (Ali/Bas) into metaphase II (MII) oocytes and analyzed the levels of histone H3K9 acetylation in donor cells and cloned embryos. We also assessed the correlation between the histone acetylation status of donor cells and cloned embryos and their developmental potential. To test whether alteration of the histone acetylation status affects development of cloned embryos, we treated donor cells with sodium butyrate (NaBu), a histone deacetylase inhibitor. Further, we tried to improve cloning efficiency by chimeric complementation of cloned embryos with one or two blastomeres from in vitro-fertilized or parthenogenetic embryos. Histone acetylation in donor cells and cloned embryos was detected by anti-acH3K9 antibody using Western immunoblot analysis or immunochemistry, respectively. Data were analyzed by chi-square (developmental rates) or Student-Newman-Keuls (histone acetylation) test. The levels of acetylated histone H3K9 were higher in RCCs than in RFFs (P &lt; 0.05). Although the type of donor cells did not affect development to blastocyst, after transfer into recipients, RCC-cloned embryos induced a higher initial pregnancy rate as compared to RFF-cloned embryos (40% vs. 20%; P &lt; 0.05). However, almost all pregnancies with either type of cloned embryos were lost by the middle of gestation and only one fully developed; a live RCC-derived rabbit was obtained. Treatment of RFFs with NaBu significantly (P &lt; 0.05) increased the level of histone H3K9/14 acetylation and the proportion of nuclear transfer embryos developing to blastocyst (49% vs. 33% with non-treated RFF; P &lt; 0.05). The distribution of signals for acH3K9 in either group of cloned embryos did not resemble that in in vivo-fertilized embryos, suggesting that reprogramming of this epigenetic mark is aberrant in cloned rabbit embryos and cannot be corrected by treatment of donor cells with NaBu. Aggregation of embryos cloned from NaBu-treated RFFs with blastomeres from in vivo-derived embryos improved development to blastocyst, but no cloned offspring were obtained. Two live cloned rabbits were produced from this donor cell type only after aggregation of cloned embryos with a parthenogenetic blastomere. Our study demonstrates that the levels of histone acetylation in donor cells and cloned embryos correlate with their developmental potential and can be a useful epigenetic mark to predict efficiency of SCNT rabbits. This work was supported by the Bayerische Forschungsstiftung and by Therapeutic Human Polyclonals, Inc.


2011 ◽  
Vol 23 (1) ◽  
pp. 135
Author(s):  
N. L. Selokar ◽  
A. George ◽  
A. P. Saha ◽  
R. Sharma ◽  
M. Muzaffar ◽  
...  

Cell cycle stage of donor cells significantly influences the cloning efficiency during SCNT. Donor cells in G1/G0 stage have better capability to undergo nuclear reprogramming following transfer to an unfertilized oocyte. The lack of availability of cells synchronized at G1/G0 stage is one of the major factors limiting cloning efficiency in buffalo. The aim of this study was to compare the efficacy of various methods for cell cycle synchronization of buffalo fetal fibroblast cells for SCNT. Cells isolated from fetus, 2 to 3 months old, were cultured in DMEM + 10% FBS. The primary culture was sub-cultured 8 to 10 times. For cell cycle synchronization, the cells were cultured to 1) 60 to 70% confluence (controls), 2) 60 to 70% confluence followed by serum starvation (DMEM + 0.5% FBS) for 24 h (serum starved), 3), full confluence followed by culture for additional 3 to 5 days (full confluent), 4) full confluence followed by serum starvation (DMEM + 0.5% FBS) for 24 h (full confluent+serum starved) and 5) 60 to 70% confluence followed by treatment with roscovitine (10, 20, or 30 μM) for 24 h. The synchronization efficiency was examined by propidium iodide staining followed by analysis of DNA content using flow cytometry and the data were analysed by 1-way ANOVA followed by Fisher’s l.s.d. test after arcsine transformation. The percentage of cells in G0/G1 phase of cell cycle was significantly higher (P < 0.05) in the full confluent+serum starved and roscovitine treated (20 or 30 μM) groups than that in the full confluent group and that treated with 10 μM roscovitine which, in turn, was higher (P < 0.05) than that in the serum starved and control groups. These results suggest that buffalo fetal fibroblast cells can be synchronized by roscovitine treatment or by serum starvation of fully confluent cell cultures to obtain a high proportion of cells in G0/G1 stage for SCNT. Table 1.Buffalo skin fibroblast cells at various stages following different treatments for cell cycle synchronization Supported by grant No. 1(5)/2007-NAIP from ICAR, India.


2008 ◽  
Vol 20 (1) ◽  
pp. 108
Author(s):  
M. Skrzyszowska ◽  
M. Samiec

The aim of our study was to determine the in vitro developmental capability of porcine nuclear-transferred (NT) embryos reconstructed with adult dermal fibroblast cells, which had been analyzed for apoptosis by live plasma membrane fluorescent labelling. Frozen/thawed fibroblasts, which had been in vitro cultured to confluency, were used for analysis. To detect the early apoptotic changes in the plasma membrane involving the externalization of phosphatidylserine molecules and the subsequent loss of lipid composition asymmetry, the fibroblasts were tagged using a conjugate of annexinV with enhanced green fluorescent protein (eGFP). In the somatic cell cloning procedure, enucleated in vitro-matured oocytes were reconstituted with non-apoptotic dermal fibroblast cell nuclei. Afterwards, NT-derived oocytes were stimulated with a combination of electrical and chemical activation. Simultaneous fusion and electrical activation were induced by application of two successive DC pulses of 1.2 kV cm–1 for 60 �s. A two-step chemical activation procedure was initiated after a 1.5–2 h delay. The cybrids were exposed to 15 µm calcium ionomycin for 5 to 7 min and then incubated in the culture medium supplemented with 10 µg mL–1 cycloheximide for 3 h. Reconstructed embryos were in vitro cultured in NCSU-23 medium for 6–7 days. Fluorescence analysis of the adult dermal fibroblast cells revealed that a relatively high proportion of donor cells exhibited proapoptotic changes in the plasma membrane. The percentage of late apoptotic cells with advanced morphological changes did not exceed 30%. Moreover, an extremely low rate (ranging from 0 to 2%) of early apoptotic cells, with a morphologically normal, i.e., smooth (non-corrugated) and intact (non-blebbing), plasmolemma but which emitted the green eGFP-derived chemiluminescence, was detected. A total of 219 enucleated oocytes were subjected to reconstruction and 185/219 (84.5%) were successfully fused with non-apoptotic nuclear donor cells. Out of 185 cultured NT embryos, 108 (58.4%) cleaved. The frequencies of cloned embryos, that reached the morula and blastocyst stages, were 84/185 (45.4%) and 26/185 (14.0%), respectively. In conclusion, annexin V-eGFP is a sensitive method able to detect the early phases of apoptosis in cultured adult dermal fibroblast cells, because it identified that very small proportion of morphologically normal cells (without shrinkage of the plasmolemma) that also emitted the annexin V-eGFP-derived biochemiluminescence. Nonetheless, the probability of their random erroneous selection for somatic cell cloning appears to be extremely low. It was also found that the preimplantation developmental potential of NT embryos originating from non-apoptotic adult dermal fibroblast cells is relatively high. This work was supported by the Scientific Net of Animal Reproduction Biotechnology.


2007 ◽  
Vol 19 (1) ◽  
pp. 152
Author(s):  
K. Naruse ◽  
Y. M. Shin ◽  
Y. S. Quan ◽  
C. S. Park ◽  
D. I. Jin

Streptolysin O (SLO) is known to bacterial proteins that form very large pores in the plasma membrane of mammalian cells. SLO has been used in the delivery of proteins into living cells following permeabilization. The objective of this study was to investigate the effect of permeabilization of donor cells using SLO on in vitro development of porcine reconstructed embryos. Porcine fetal fibroblast cells were treated with Ca2+-free DMEM medium containing 200 ng mL−1 of SLO for 50 min before or after trypsinization. Those SLO-treated donor cells were injected into enucleated oocytes, fused with 2 DC pulses (1.2 kV cm−1, 30 µs) and cultured in procine zygote medium-3 (PZM-3) for 6 days. In vitro development of the reconstructed embryos was examined. SLO treatment after trypsinzation significantly increased (P &lt; 0.05) the percentage of fusion rates and blastocyst developmental rates compared with that before trypsinization or in the nontreated group. Additionally there were no significant differences in fusion rates, cleavage rates, blastocyst developmental rates, and total cell number of blastocysts between the SLO-treated group before trypsinzation and the nontreated group. Next, after the trypsinzation treatment, fetal fibroblast cells were incubated in Ca2+-free DMEM containing 200 ng mL−1 of SLO for 0, 30, 50, and 70 min and SLO-treated donor cells were also tested for fusion rate and developmental capability following reconstruction. The 50-min group of SLO-treated cells significantly increased (P &lt; 0.05) the percentage of fusion rates (90.6 vs. 77.6, 85.4, and 78.5%) and blastocyst developmental rates (24.7 vs. 13.5, 11.2, and 13.5%) compared with the other groups (Table 1). However, there was no significant difference in the total cell number of blastocysts among SLO-treated groups. Although cleavage rates the in SLO-treated groups were not significantly different from those of the nontreated group, there the cleavage rates were slightly in SLO-treated groups. In conclusion, permeabilization of porcine fetal fibroblast cells with SLO improves the fusion rates and in vitro development of porcine reconstructed embryos. Table 1.Effects of SLO treatment of fetal fibroblasts by different exposure times on in vitro development of porcine reconstructed embryos


2007 ◽  
Vol 19 (1) ◽  
pp. 169
Author(s):  
H. M. Zhou ◽  
Y. Chen

This study reconstructed embryos using adult and fetal skin fibroblast cells as donor karyoplasts and ovine enucleated oocytes as recipient cytoplasts for comparing the developmental potential of the reconstructed embryos. Ovine ovaries were collected at a local slaughterhouse and the cumulus–oocyte complexes (COCs) were extracted from antral follicles 2 to 5 mm in diameter. A group of 20 to 30 COCs were matured in a 50-�L microdrop of maturation medium that was composed of TCM-199 supplemented with 20% FBS, 10 �g mL-1 FSH, 20 �g mL-1 LH, and 1.5 �g mL-1 17β-estradiol under mineral oil in a 35-mm petri dish in humidified atmosphere of 5% CO2 in air at 38.5�C for 18–22 h. Then oocytes with extruded first polar body (MII) were selected and enucleated for use as recipient cytoplasm. Adult and fetal ovine skin tissues were cut into small pieces (1 mm3), transferred to a 25-mL culture flask containing 2 mL DMEM-F12 medium supplemented with 10% FBS, and then incubated by using explant tissue culture in humidified atmosphere of 5% CO2 in air at 37�C for 5 to 7 days. The medium and unattached epithelial cells were discarded. The attached fibroblast cells were digested by 0.25% trypsin in D-Hanks solution at 37�C for 5 min and dispersed by pipetting. The cell suspensions were transferred to a centrifuge tube and centrifuged at 100g for 10 min. Subsequently, the recovered cells were subcultured for 4–6 passages and then frozen in DMEM-F12 medium containing 10% dimethyl sulfoxide (DMSO) and 20% FBS in liquid nitrogen. The fibroblast cells were serum-starved in DMEM-F12 supplemented with 0.5% FBS for 3 to 5 days and transferred into a micromanipulation drop consisting of H-M199 supplemented with 10% FBS and 5 �g mL-1 cytochalasin B for use. The adult and fetal skin fibroblast cells were injected into the recipient cytoplasm. The fusion of fibroblast cells into the recipient cytoplasm was induced by electrofusion (1500 V cm-1 for 40 �s two times with an interval of 0.125 s). The fused oocytes were activated by 5 mM mL-1 ionomycin with 2 mM mL-1 6-dimethylaminopurine (6-DMAP). A group of 6–10 of the activated reconstructed embryos were co-cultured with ovine cumulus cells in synthetic oviduct fluid supplemented with amino acid (SOFaa) and 10% FBS in a 20-�L microdrop for 168 h. The results indicated that 76.0% (596/784) and 75.5% (249/330) of the nuclear transfer couplets were successfully fused from adult fibroblasts and fetal fibroblasts, respectively; 76.2% (454/596) and 79.5% (198/249) of the fused oocytes cleaved within 48 h after activation for adult and fetal, respectively; 26.9% (122/454) and 28.3% (56/198) of the cleaved oocytes developed to morula or/and blastocyst embryo stages, respectively. This study demonstrated that the ovine somatic cell transferred embryos were initiated for cell cycle of mitosis and underwent subsequent development to morula/blastocyst embryo stage in vitro, and that there were no statistical differences (P &gt; 0.05) in developmental capacity between the cloned embryos from adult and fetal skin fibroblast cells.


2010 ◽  
Vol 22 (1) ◽  
pp. 194
Author(s):  
H. Oh ◽  
O. J. Koo ◽  
M. J. Kim ◽  
J. Park ◽  
S. Hong ◽  
...  

The coordination between the cell cycle stages of nuclear donor cells and host oocytes has a critical effect on the development of embryos produced by somatic cell nuclear transfer (SCNT). Here, we investigated (1) whether roscovitine, an inhibitor of cyclin-dependent kinases (CDK) could arrest canine somatic cells at S/G2 phase of the cell cycle; (2) whether IVM metaphase II (MII) oocyte could be induced to telophase II (TII) after activation. Last, we investigated embryo development ability of nonactivated oocytes (MII) or activated oocytes (TII) fused with somatic cells at different stages of the cell cycle. Dog fetal fibroblasts were treated with roscovitine (30 or 60 μg mL-1 at 24, 48, or 72 h) and a control group of donor cells was cultured to reach confluency. The cells were then fixed and stained with 1 mg mL-1 propidium iodide for flow cytometric analysis. For SCNT, IVM dog oocytes were obtained by flushing (approximately 72 h after ovulation) from the oviducts of oocyte donor dog (Canis familiaris) and divided into 2 groups; nonactivated oocytes (MII) and activated oocytes (TII) by 10 μg mL-1 calcium ionophore for 4 min. Following preparation of each donor cell arrested in G0 and G2/M phase, cells of G0 stage were placed into enucleated MII oocytes (MII-G0) and cells of G2/M-phase were placed into enucleated TII oocytes (TII-G2/M). After fusion by electric stimulation, the MII-G0 group was chemically activated and cultured in modified SOF medium (mSOF), and the TII-G2/M group was cultured in mSOF without activation. The embryo developmental competence was estimated by assessing in vitro development under the microscope. Data were analyzed using a statistical analysis system program. Based on flow cytometry, the frequency of cells arrested at G2/M-phase in the 30 and 60 μg mL-1 roscovitine groups was significantly higher than that in control (31.95 and 25.99% v. 19.79%, respectively), but differences were not observed between the 30 and 60 μg mL-1 roscovitine groups (P > 0.05). Also, a significant increase in the proportion of cells at G2/M-phase was observed at 48 and 72 h in both roscovitine groups compared with the group not treated with roscovitine. The proportion of cells at G2/M-phase in the 60 μg mL-1 group at 48 h and the 30 μg mL-1 group at 72 h was the highest among all treatments. For the TII-G2/M group, we injected into enucleated TII oocyte and selected a large cell that arrested at G2/M-phase in cells cultured with 60 μg mL-1 roscovitine for 48 h. For the result of in vitro development of cloned embryo from MII-G0 and TII-G2/M, TII-G2/M group (39.4 and 7.8%) showed an increased cleavage rate and development to 8 cells compared with MII-G0 (23.5 and 2.9%). In the present study, we demonstrated that, in combination with nuclear donor cells at specific cell cycle stages, MII and TII dog oocytes are similarly effective in supporting the reprogramming of somatic cell nuclei. This study was supported by Korean MEST through KOSEF (grant # M10625030005-09N250300510) and BK21 program, RNL BIO, and Natural Balance Korea.


2008 ◽  
Vol 14 (5) ◽  
pp. 418-432 ◽  
Author(s):  
Zhisheng Zhong ◽  
Yanhong Hao ◽  
Rongfeng Li ◽  
Lee Spate ◽  
David Wax ◽  
...  

AbstractWe previously reported that translocation of mitochondria from the oocyte cortex to the perinuclear area indicates positive developmental potential that was reduced in porcine somatic cell nuclear transfer (SCNT) embryos compared to in vitro–fertilized (IVF) embryos (Katayama, M., Zhong, Z.-S., Lai, L., Sutovsky, P., Prather, R.S. & Schatten, H. (2006). Dev Biol299, 206–220.). The present study is focused on distribution of donor cell mitochondria in intraspecies (pig oocytes; pig fetal fibroblast cells) and interspecies (pig oocytes; mouse fibroblast cells) reconstructed embryos by using either pig fibroblasts with mitochondria-stained MitoTracker CMXRos or YFP-mitochondria 3T3 cells (pPhi-Yellow-mito) as donor cells. Transmission electron microscopy was employed for ultrastructural analysis of pig oocyte and donor cell mitochondria. Our results revealed donor cell mitochondrial clusters around the donor nucleus that gradually dispersed into the ooplasm at 3 h after SCNT. Donor-derived mitochondria distributed into daughter blastomeres equally (82.8%) or unequally (17.2%) at first cleavage. Mitochondrial morphology was clearly different between donor cells and oocytes in which various complex shapes and configurations were seen. These data indicate that (1) unequal donor cell mitochondria distribution is observed in 17.2% of embryos, which may negatively influence development; and (2) complex mitochondrial morphologies are observed in IVF and SCNT embryos, which may influence mitochondrial translocation and affect development.


Sign in / Sign up

Export Citation Format

Share Document