50 FLOW CYTOMETRY-MEDIATED DETECTION OF LATE-APOPTOTIC HYPODIPLOID CELL FRACTIONS IN LIPOFECTED PORCINE ADULT DERMAL FIBROBLAST CELL LINES SELECTED FOR SOMATIC CELL NUCLEAR TRANSFER

2009 ◽  
Vol 21 (1) ◽  
pp. 125
Author(s):  
M. Samiec ◽  
M. Skrzyszowska ◽  
M. Bochenek ◽  
R. Slomski ◽  
D. Lipinski

Analysis of nuclear DNA (nDNA) content of in vitro cultured somatic cells undergoing apoptosis became one of the most common methods for single-parameter flow cytometric measurement of this process. Apoptosis assessment is performed by quantification of hypodiploid cells. The cell fractions with hypodiploid (<2C) nDNA molecule number, which involve the so-called sub-G1 peak in DNA histograms are identified as late-apoptotic subpopulations. Advantage of this method is the possibility of simultaneous cell cycle measurement. The present study was conducted to investigate the preimplantation developmental outcome of porcine transgenic NT embryos reconstituted with non-apoptotic gilt ear skin-derived fibroblast cells that had been lipofected with pWAPhGH-GFPBsd gene construct. The nuclear donor cells were derived from such cell line populations whose representative random samples had been analyzed on both cell cycle and apoptosis through the non-vital nDNA fluorescent dyeing and subsequent flow cytometry (FACS). Frozen/thawed fibroblast cells, which had been cultured up to a total confluency after 2–3 passages, were used for the diagnostics. The fixed dermal fibroblasts were exposed to nDNA extraction buffer for 5 min and incubated in DNA staining solution (propidium iodide and RNAse) for 30 min. After fluorescent labeling, the cells were analyzed in the flow cytometer by reading nDNA fluorescence in the red band. Somatic cell cloned embryos, which had been created by simultaneous fusion and electrical activation, followed by delayed chemical activation of reconstructed oocytes, were cultured in NCSU-23/FBS medium for 6 to 7 days up to morula/blastocyst stages (Skrzyszowska et al. 2008 Theriogenology 70, 248–259). The FACS analysis revealed that out of all the fibroblast cells diagnosed, 94.9% were cycling and 5.1% were late-apoptotic. In turn, from among the non-apoptotic cells, an average of 92.7% were at G1/G0 stages of cell cycle, 3.1% were at S stage and 4.2% were at G2/M stages. A total of 294/348 (84.5%) enucleated oocytes were successfully fused with non-apoptotic nuclear donor cells. Out of 294 cultured NT embryos, 199 (67.7%) were cleaved. The rates of cloned embryos that reached the morula and blastocyst stages yielded 165/294 (56.1%) and 57/294 (19.4%), respectively. In conclusion, the FACS analysis for mitotic cycle of 100%-confluent lipofected adult dermal fibroblasts confirmed that the cell cycle synchronization at G1/G0 phases was highly efficient, while the frequency of late-apoptotic cells was low. It was also found that the relatively high percentages of pWAPhGH-GFPBsd transgenic blastocysts developed in vitro from NT embryos reconstructed with fibroblast cells undergoing lipofection. Furthermore, porcine cloned blastocysts exhibited approximately 100% index of reporter eGFP transgene expression, which was visually confirmed by their live-fluorescent evaluation. This work was supported by the Scientific Net of Animal Reproduction Biotechnology.

2007 ◽  
Vol 19 (1) ◽  
pp. 159
Author(s):  
M. Samiec ◽  
M. Skrzyszowska ◽  
M. Bochenek ◽  
D. Lipinski ◽  
R. Slomski

The important factor that determines the development of mammalian cloned embryos is structuro-functional quality of nuclear donor cells. Analysis of nuclear DNA (nDNA) content of somatic cells undergoing apoptosis has become one of the most common methods for single-parameter flow cytometric measurement of this process. Apoptosis assessment is performed by quantification of hypodiploid cells. The aim of our study was to examine the in vitro developmental potential of porcine nuclear transfer (NT) embryos reconstituted with non-apoptotic fetal fibroblast cells expressing the eGFP transgene. The nuclear donor cells were derived from cell line populations whose representative random samples had been analyzed on both cell cycle and apoptosis through non-vital nDNA fluorescent dyeing and flow cytometry (FACS). Frozen-thawed fibroblast cells, which had been cultured up to a total confluency after 2–4 passages, were used for the diagnostics. The cells were fixed in ice-cold 70% ethanol. Then, the fetal fibroblasts were exposed to nDNA extraction buffer for 5 min at room temperature, and incubated in DNA staining solution (propidium iodide and RNAse) for 30 min. After fluorescent labeling, the cells were analyzed in the flow cytometer by reading nDNA fluorescence in the red band. In vitro-matured oocytes were the source of recipient cells. Fibroblast cell–ooplast couplets were simultaneously fused and activated. Reconstructed embryos were cultured in NCSU-23/BSA/FBS medium for 6–7 days. The rates of cleavage and development to morula/blastocyst stages were examined on Days 2 and 6/7, respectively. FACS analysis revealed that, out of all of the diagnosed fetal fibroblast cells, 54.7% were cycling, and up to 45.3% were late-apoptotic. In turn, from among the normal (i.e. non-apoptotic) cells, 82.2% were at G0/G1 stages of cell cycle, 17.0% at the S stage, and 0.8% at G2/M stages. A total of 150 enucleated oocytes were successfully fused with non-apoptotic transgenic nuclear donor cells. Out of 150 cultured NT embryos, 123 (82.0%) were cleaved. The frequencies of cloned embryos that reached the morula and blastocyst stages yielded 53/150 (35.3%) and 37/150 (24.7%), respectively. In conclusion, the FACS analysis for mitotic cycle of 100%-confluent transgenic fetal fibroblasts confirmed the high efficiency of the cell cycle synchronization at G0/G1 phases. However, a contact inhibition method induced the high frequency of late-apoptotic cells. Moreover, the relatively high percentage of NT blastocysts was developed from oocytes reconstructed with eGFP transgenic fetal fibroblast cells. This research was supported by the State Committee for Scientific Research as a Solicited Project number PBZ-MIN-005/P04/2002/6 from year 2003 to year 2006.


2008 ◽  
Vol 20 (1) ◽  
pp. 108
Author(s):  
M. Skrzyszowska ◽  
M. Samiec

The aim of our study was to determine the in vitro developmental capability of porcine nuclear-transferred (NT) embryos reconstructed with adult dermal fibroblast cells, which had been analyzed for apoptosis by live plasma membrane fluorescent labelling. Frozen/thawed fibroblasts, which had been in vitro cultured to confluency, were used for analysis. To detect the early apoptotic changes in the plasma membrane involving the externalization of phosphatidylserine molecules and the subsequent loss of lipid composition asymmetry, the fibroblasts were tagged using a conjugate of annexinV with enhanced green fluorescent protein (eGFP). In the somatic cell cloning procedure, enucleated in vitro-matured oocytes were reconstituted with non-apoptotic dermal fibroblast cell nuclei. Afterwards, NT-derived oocytes were stimulated with a combination of electrical and chemical activation. Simultaneous fusion and electrical activation were induced by application of two successive DC pulses of 1.2 kV cm–1 for 60 �s. A two-step chemical activation procedure was initiated after a 1.5–2 h delay. The cybrids were exposed to 15 µm calcium ionomycin for 5 to 7 min and then incubated in the culture medium supplemented with 10 µg mL–1 cycloheximide for 3 h. Reconstructed embryos were in vitro cultured in NCSU-23 medium for 6–7 days. Fluorescence analysis of the adult dermal fibroblast cells revealed that a relatively high proportion of donor cells exhibited proapoptotic changes in the plasma membrane. The percentage of late apoptotic cells with advanced morphological changes did not exceed 30%. Moreover, an extremely low rate (ranging from 0 to 2%) of early apoptotic cells, with a morphologically normal, i.e., smooth (non-corrugated) and intact (non-blebbing), plasmolemma but which emitted the green eGFP-derived chemiluminescence, was detected. A total of 219 enucleated oocytes were subjected to reconstruction and 185/219 (84.5%) were successfully fused with non-apoptotic nuclear donor cells. Out of 185 cultured NT embryos, 108 (58.4%) cleaved. The frequencies of cloned embryos, that reached the morula and blastocyst stages, were 84/185 (45.4%) and 26/185 (14.0%), respectively. In conclusion, annexin V-eGFP is a sensitive method able to detect the early phases of apoptosis in cultured adult dermal fibroblast cells, because it identified that very small proportion of morphologically normal cells (without shrinkage of the plasmolemma) that also emitted the annexin V-eGFP-derived biochemiluminescence. Nonetheless, the probability of their random erroneous selection for somatic cell cloning appears to be extremely low. It was also found that the preimplantation developmental potential of NT embryos originating from non-apoptotic adult dermal fibroblast cells is relatively high. This work was supported by the Scientific Net of Animal Reproduction Biotechnology.


2010 ◽  
Vol 22 (1) ◽  
pp. 251
Author(s):  
J.-G. Yoo ◽  
M.-R. Park ◽  
H.-N. Kim ◽  
Y.-G. Ko ◽  
J.-Y. Lee ◽  
...  

Instead of surgical embryo transfer (ET) in the pig, nonsurgical ET is a hopeful method to increase the efficiency of biotechnology applications such as cloning and transgenesis. In this study, we conducted surgical and nonsurgical ET methods after somatic cell nuclear transfer (SCNT) with MHC miniature pig cells to find out the best condition for production of cloned miniature pigs. Ovaries were obtained from prepubertal crossbred gilts at a local slaughterhouse. Oocytes were matured for 40 to 44 h at 38.5°C under 5% CO2 in air. As donor cells, fibroblast cells were cultured from ear skin tissue of 8-month-old MHC inbred miniature pigs. Fibroblast cells were cultured, passaged (3 to 8 passages), and used as donor cells for NT. After the enucleation and injection process, eggs were held in TCM-199. For fusion, 2 DC pulses of 1.2 kV cm-1 were applied for 30 μs. Both IVF and SCNT embryos were cultured in PZM-3 medium. After IVF, 84.9% (411/484) of embryos cleaved and 27.3% (132/484) of embryos reached the blastocyst stage. In the SCNT group, 80.8% (231/286) of eggs fused and 25.9% (60/286) of embryos developed to blastocysts. For surgical ET, approximately 200 SCNT embryos were transferred into oviducts of each synchronized recipient. For nonsurgical ET, embryos were cultured in PZM-3 for 6 days after SCNT and IVF, and then good quality blastocyst stage embryos were selected for ET. The pregnancy status of recipients at Day 30 was determined by ultrasound scanning. Using Day 30 of gestation as an endpoint, the nonsurgical ET method (47.3%, 9/19) had a similar pregnancy rate as the surgical ET method (56.5%, 13/23). Further study is needed to optimize the nonsurgical ET method especially for SCNT eggs. This work received grant support from the Agenda Program (no. 200901FHT010305535), Rural Development Administration, Republic of Korea.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Mingwu Deng ◽  
Yuda Xu ◽  
Ziyou Yu ◽  
Xiangsheng Wang ◽  
Yizuo Cai ◽  
...  

Background. Nanofat can protect against ultraviolet B- (UVB-) induced damage in nude mice. Fat extract (FE) is a cell-free fraction isolated from nanofat that is enriched with a variety of growth factors. Objective. To determine whether FE can protect against UVB-induced photoaging in cultured dermal fibroblasts and in nude mice. Method. For the in vitro study, human dermal skin fibroblasts were pretreated with FE 24 h prior to UVB irradiation. Generation of reactive oxygen species (ROS) was analyzed immediately following irradiation, while cell cycle analysis was performed 24 h after UVB irradiation. Senescence-associated β-galactosidase (SA-β-gal) expression, cell proliferation, and expression of glutathione peroxidase 1 (GPX-1), catalase, superoxide dismutase-1 (SOD-1), SOD-2, and collagen type 1 (COL-1) were investigated 72 h after UVB irradiation. For the in vivo study, the dorsal skin of nude mice was irradiated with UVB and mice were then treated with FE for 8 weeks. The thickness of the dermis, capillary density, and apoptotic cells in skin tissue sections were investigated after treatment. The expression of GPX-1, catalase, SOD-2, SOD-1, and COL-1 in the tissue was also measured. Result. FE significantly increased cell proliferation and protected cells against UVB-induced cell death and cell cycle arrest. FE reduced ROS and the number of aged cells induced by UVB irradiation. FE promoted the expression of COL-1 and GPX-1 in cultured dermal fibroblasts. FE treatment of UVB-irradiated skin increased dermal thickness and capillary density, decreased the number of apoptotic cells, and promoted the expression of COL-1 and GPX-1. Conclusion. FE protects human dermal fibroblasts and the skin of nude mice from UVB-induced photoaging through its antioxidant, antiapoptotic, and proangiogenic activities.


2010 ◽  
Vol 22 (1) ◽  
pp. 194
Author(s):  
H. Oh ◽  
O. J. Koo ◽  
M. J. Kim ◽  
J. Park ◽  
S. Hong ◽  
...  

The coordination between the cell cycle stages of nuclear donor cells and host oocytes has a critical effect on the development of embryos produced by somatic cell nuclear transfer (SCNT). Here, we investigated (1) whether roscovitine, an inhibitor of cyclin-dependent kinases (CDK) could arrest canine somatic cells at S/G2 phase of the cell cycle; (2) whether IVM metaphase II (MII) oocyte could be induced to telophase II (TII) after activation. Last, we investigated embryo development ability of nonactivated oocytes (MII) or activated oocytes (TII) fused with somatic cells at different stages of the cell cycle. Dog fetal fibroblasts were treated with roscovitine (30 or 60 μg mL-1 at 24, 48, or 72 h) and a control group of donor cells was cultured to reach confluency. The cells were then fixed and stained with 1 mg mL-1 propidium iodide for flow cytometric analysis. For SCNT, IVM dog oocytes were obtained by flushing (approximately 72 h after ovulation) from the oviducts of oocyte donor dog (Canis familiaris) and divided into 2 groups; nonactivated oocytes (MII) and activated oocytes (TII) by 10 μg mL-1 calcium ionophore for 4 min. Following preparation of each donor cell arrested in G0 and G2/M phase, cells of G0 stage were placed into enucleated MII oocytes (MII-G0) and cells of G2/M-phase were placed into enucleated TII oocytes (TII-G2/M). After fusion by electric stimulation, the MII-G0 group was chemically activated and cultured in modified SOF medium (mSOF), and the TII-G2/M group was cultured in mSOF without activation. The embryo developmental competence was estimated by assessing in vitro development under the microscope. Data were analyzed using a statistical analysis system program. Based on flow cytometry, the frequency of cells arrested at G2/M-phase in the 30 and 60 μg mL-1 roscovitine groups was significantly higher than that in control (31.95 and 25.99% v. 19.79%, respectively), but differences were not observed between the 30 and 60 μg mL-1 roscovitine groups (P > 0.05). Also, a significant increase in the proportion of cells at G2/M-phase was observed at 48 and 72 h in both roscovitine groups compared with the group not treated with roscovitine. The proportion of cells at G2/M-phase in the 60 μg mL-1 group at 48 h and the 30 μg mL-1 group at 72 h was the highest among all treatments. For the TII-G2/M group, we injected into enucleated TII oocyte and selected a large cell that arrested at G2/M-phase in cells cultured with 60 μg mL-1 roscovitine for 48 h. For the result of in vitro development of cloned embryo from MII-G0 and TII-G2/M, TII-G2/M group (39.4 and 7.8%) showed an increased cleavage rate and development to 8 cells compared with MII-G0 (23.5 and 2.9%). In the present study, we demonstrated that, in combination with nuclear donor cells at specific cell cycle stages, MII and TII dog oocytes are similarly effective in supporting the reprogramming of somatic cell nuclei. This study was supported by Korean MEST through KOSEF (grant # M10625030005-09N250300510) and BK21 program, RNL BIO, and Natural Balance Korea.


2008 ◽  
Vol 14 (5) ◽  
pp. 418-432 ◽  
Author(s):  
Zhisheng Zhong ◽  
Yanhong Hao ◽  
Rongfeng Li ◽  
Lee Spate ◽  
David Wax ◽  
...  

AbstractWe previously reported that translocation of mitochondria from the oocyte cortex to the perinuclear area indicates positive developmental potential that was reduced in porcine somatic cell nuclear transfer (SCNT) embryos compared to in vitro–fertilized (IVF) embryos (Katayama, M., Zhong, Z.-S., Lai, L., Sutovsky, P., Prather, R.S. & Schatten, H. (2006). Dev Biol299, 206–220.). The present study is focused on distribution of donor cell mitochondria in intraspecies (pig oocytes; pig fetal fibroblast cells) and interspecies (pig oocytes; mouse fibroblast cells) reconstructed embryos by using either pig fibroblasts with mitochondria-stained MitoTracker CMXRos or YFP-mitochondria 3T3 cells (pPhi-Yellow-mito) as donor cells. Transmission electron microscopy was employed for ultrastructural analysis of pig oocyte and donor cell mitochondria. Our results revealed donor cell mitochondrial clusters around the donor nucleus that gradually dispersed into the ooplasm at 3 h after SCNT. Donor-derived mitochondria distributed into daughter blastomeres equally (82.8%) or unequally (17.2%) at first cleavage. Mitochondrial morphology was clearly different between donor cells and oocytes in which various complex shapes and configurations were seen. These data indicate that (1) unequal donor cell mitochondria distribution is observed in 17.2% of embryos, which may negatively influence development; and (2) complex mitochondrial morphologies are observed in IVF and SCNT embryos, which may influence mitochondrial translocation and affect development.


Author(s):  
Zeinab Abedian ◽  
Niloofar Jenabian ◽  
Ali Akbar Moghadamnia ◽  
Ebrahim Zabihi ◽  
Roghayeh Pourbagher ◽  
...  

Objective/ Background: Cancer is still the most common cause of morbidity in world and new powerful anticancer agents without severe side effects from natural sources is important. Methods: The evaluation of cytotoxicity and apoptosis induction was carried out in MCF-7,HeLa and Saos-2 as cancerous cell lines with different histological origin and human fibroblast served as control normal cell. The cells were treated with different concentrations of chitosan and the cytotoxicity was determined using MTT assay after 24, 48 and 72 h .The mode of death was evaluated by flow cytometry . Results: While both types of chitosan showed significant concentration-dependently cytotoxic effects against the three cancerous cell lines, fibroblast cells showed somehow more compatibility with chitosan. On the other hand, there were no significant differences between LMWC and HMWC cytotoxicity in all cell lines. The flow cytometry results showed the apoptosis pattern of death more in Saos-2 and HeLa while necrosis was more observable with MCF7. Also higher viability with both types of chitosan was seen in fibroblast as normal cells Conclusion: Chitosan shows anticancerous effect against 3 cancerous cell lines, while it is compatible with normal diploid fibroblast cells. Furthermore, it seems that the molecular weight of chitosan does not affect its anticancerous property.


2019 ◽  
Vol 19 (3) ◽  
pp. 365-374 ◽  
Author(s):  
Yang Liu ◽  
Jingyin Zhang ◽  
Shuyun Feng ◽  
Tingli Zhao ◽  
Zhengzheng Li ◽  
...  

Objective: The aim of this study is to investigate the inhibitory effect of camptothecin derivative 3j on Non-Small Cell Lung Cancer (NSCLCs) cells and the potential anti-tumor mechanisms. Background: Camptothecin compounds are considered as the third largest natural drugs which are widely investigated in the world and they suffered restriction because of serious toxicity, such as hemorrhagic cystitis and bone marrow suppression. Methods: Using cell proliferation assay and S180 tumor mice model, a series of 20(S)-O-substituted benzoyl 7- ethylcamptothecin compounds were screened and evaluated the antitumor activities in vitro and in vivo. Camptothecin derivative 3j was selected for further study using flow cytometry in NSCLCs cells. Cell cycle related protein cyclin A2, CDK2, cyclin D and cyclin E were detected by Western Blot. Then, computer molecular docking was used to confirm the interaction between 3j and Topo I. Also, DNA relaxation assay and alkaline comet assay were used to investigate the mechanism of 3j on DNA damage. Results: Our results demonstrated that camptothecin derivative 3j showed a greater antitumor effect in eleven 20(S)-O-substituted benzoyl 7-ethylcamptothecin compounds in vitro and in vivo. The IC50 of 3j was 1.54± 0.41 µM lower than irinotecan with an IC50 of 13.86±0.80 µM in NCI-H460 cell, which was reduced by 8 fold. In NCI-H1975 cell, the IC50 of 3j was 1.87±0.23 µM lower than irinotecan (IC50±SD, 5.35±0.38 µM), dropped by 1.8 fold. Flow cytometry analysis revealed that 3j induced significant accumulation in a dose-dependent manner. After 24h of 3j (10 µM) treatment, the percentage of NCI-H460 cell in S-phase significantly increased (to 93.54 ± 4.4%) compared with control cells (31.67 ± 3.4%). Similarly, the percentage of NCI-H1975 cell in Sphase significantly increased (to 83.99 ± 2.4%) compared with control cells (34.45 ± 3.9%) after treatment with 10µM of 3j. Moreover, increased levels of cyclin A2, CDK2, and decreased levels of cyclin D, cyclin E further confirmed that cell cycle arrest was induced by 3j. Furthermore, molecular docking studies suggested that 3j interacted with Topo I-DNA and DNA-relaxation assay simultaneously confirmed that 3j suppressed the activity of Topo I. Research on the mechanism showed that 3j exhibited anti-tumour activity via activating the DNA damage response pathway and suppressing the repair pathway in NSCLC cells. Conclusion: Novel camptothecin derivative 3j has been demonstrated as a promising antitumor agent and remains to be assessed in further studies.


1995 ◽  
Vol 108 (6) ◽  
pp. 2187-2196 ◽  
Author(s):  
L.J. Wangh ◽  
D. DeGrace ◽  
J.A. Sanchez ◽  
A. Gold ◽  
Y. Yeghiazarians ◽  
...  

Rapid genome replication is one of the hallmarks of the frog embryonic cell cycle. We report here that complete reactivation of quiescent somatic cell nuclei in Xenopus egg extracts depends on prior restructuring of the nuclear substrate and prior preparation of cytoplasmic extract with the highest capacity to initiate and sustain DNA synthesis. Nuclei from mature erythrocytes swell, replicate their DNA efficiently, and enter mitosis in frozen/thawed extracts prepared from activated Xenopus eggs, provided the nuclei are first treated with trypsin, heparin, and an extract prepared from unactivated, meiotically arrested, eggs. Optimal replicating extracts are prepared from large batches of unfertilized eggs that are synchronously activated into the cell cycle for 28 minutes (at 20 degrees C). Because the Xenopus cell cycle progresses so rapidly, extracts prepared just a few minutes before or after this time have substantially lower DNA synthetic capacities. At the optimal time and temperature, eggs have just reached the G1/S boundary of the first cell cycle. This fact was revealed by injecting and replicating an SV40 plasmid in intact unfertilized eggs as described previously. We estimate that under optimal conditions approximately 6.14 × 10(9) base pairs of DNA/per nucleus are synthesized in 30–40 minutes, a rate that rivals that observed in the zygotic nucleus. The findings reported here are one step in our long term effort to develop a new in vitro/in vivo approach to nuclear transplantation. Nuclear transplantation in amphibian embryos has been used to establish that the genomes of many types of differentiated somatic cells are pluripotent. But very few such nuclei have ever developed into advanced tadpoles or adult frogs, probably because somatic nuclei injected directly into activated eggs fail to reactivate quickly enough to avoid being damaged during first mitosis. We have already shown that unfertilized eggs can be injected prior to activation of the first cell cycle. Future experiments will reveal whether in vitro reactivated somatic cell nuclei transplanted into such eggs reliably reach advanced stages of development.


Blood ◽  
1995 ◽  
Vol 86 (2) ◽  
pp. 512-523 ◽  
Author(s):  
JE Wagner ◽  
D Collins ◽  
S Fuller ◽  
LR Schain ◽  
AE Berson ◽  
...  

Human CD34+ cells were subfractionated into three size classes using counterflow centrifugal elutriation followed by immunoadsorption to polystyrene cell separation devices. The three CD34+ cell fractions (Fr), Fr 25/29, Fr 33/37, and Fr RO, had mean sizes of 8.5, 9.3 and 13.5 microns, respectively. The majority of cells in the large Fr RO CD34+ cell population expressed the committed stage antigens CD33, CD19, CD38, or HLA-DR and contained the majority of granulocyte- macrophage colony-forming units (CFU-GM), burst-forming units-erythroid (BFU-E), and CFU-mixed lineage (GEMM). In contrast, the small Fr 25/29 CD34+ cells were devoid of committed cell surface antigens and lacked colony-forming activity. When seeded to allogeneic stroma, Fr RO CD34+ cells produced few CFU-GM at week 5, whereas cells from the Fr 25/29 CD34+ cell population showed a 30- to 55-fold expansion of myeloid progenitors at this same time point. Furthermore, CD34+ cells from each size fraction supported ontogeny of T cells in human thymus/liver grafts in severe combined immunodeficient (SCID) mice. Upon cell cycle analyses, greater than 97% of the Fr 25/29 CD34+ cells were in G0/G1 phase, whereas greater proportions of the two larger CD34+ cell fractions were in active cell cycle. Binding of the cytokines interleukin (IL)-1 alpha, IL-3, IL-6, stem cell factor (SCF), macrophage inhibitory protein (MIP)-1 alpha, granulocyte colony- stimulating factor (G-CSF), and granulocyte-macrophage (GM)-CSF to these CD34+ cell populations was also analyzed by flow cytometry. As compared with the larger CD34+ cell fractions, cells in the small Fr 25/29 CD34+ cell population possessed the highest numbers of receptors for SCF, MIP1 alpha, and IL-1 alpha. Collectively, these results indicate that the Fr 25/29 CD34+ cell is a very primitive, quiescent progenitor cell population possessing a high number of receptors for SCF and MIP1 alpha and capable of yielding both myeloid and lymphoid lineages when placed in appropriate in vitro or in vivo culture conditions.


Sign in / Sign up

Export Citation Format

Share Document